
ICS-233 Computer Architecture & Assembly Lang. (Term 062) 1

Lab# 7 INTEGER MULTIPLICATION AND DIVISION

Instructor: I Putu Danu Raharja.

Objectives:
Learn how to perform integer multiplication and division operations in MIPS assembly
language programs.

Method:

Translate an algorithm from pseudo-code into assembly language.

Preparation:

Read the chapter 3 of lecture textbook.

7.1 MULTIPLICATION
The following figure illustrates the process of an integer multiplication of two 32-bit

registers to produce a value of 64-bit.

No < 32 repetitions

Multiplier0 = 0 Multiplier0 = 1

Start

1. Test
Multiplier0

1a. Add multiplicand to product and
place the result in Product register.

2. Shift the Multiplicand register left 1 bit.

3. Shift the Multiplier register right 1 bit.

32nd repetition?

Done

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 2

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product, called

Hi and Lo. To produce a properly signed or unsigned product, MIPS has two instructions:

a. multiply (mult)

b. multiply unsigned (multu)

To fetch the integer 32-bit products, the programmer uses the following instructions:

a. move from Lo (mflo)

b. move from Hi (mfhi)

Both MIPS multiply instructions ignore overflow, so it is up to the software to check to

see if the product is too big to fit in 32 bits. There is no overflow if Hi is 0 for multu

or the replicated sign of Lo for mult. The instruction move from Hi (mfhi) can be

used to transfer Hi to a general-purpose register to test for overflow.

7.2 DIVISION
MIPS uses the 32-bit Hi and 32-bit Lo registers for divide. And after the divide

instruction completes, the Hi register contains the remainder, and the Lo register contains

the quotient.

To handle both signed integers and unsigned integers, MIPS has two instructions:

a. divide (div),

b. divide unsigned (divu).

MIPS divide instructions ignore overflow, so software must determine if the quotient is

too large. In addition to overflow, division can also result in an improper calculation:

division by 0. MIPS software must check the divisor to discover division by 0 as well as

overflow.

The following figure shows the process of an integer division.

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 3

Yes: 33 repetitions

Start

1. Subtract the Divisor register from the
Remainder register and place the result

in the Remainder register

Test
Remainder

2a Shift the Quotient register
to the left, setting the new
rightmost bit to 1

Remainder >= 0

2b Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0.

Remainder < 0

3. Shift the Divisor register right 1 bit

33rd repetition?

Done

No < 33 repetitions

7.3 EXERCISE:
1. Write a function to find the determinant of a two-by-two matrix. The address of

the array is passed to the function in register $a0 and the result is returned in

$v0.

2. Implement the algorithm of multiplication mentioned in 7.1 in MIPS assembly

language program.

3. Implement the algorithm of division mentioned in 7.2 in MIPS assembly language

program.

