
ICS-233 Computer Architecture & Assembly Language (Term 062) 1

LLaabb## 55 AARRRRAAYYSS

Instructor: I Putu Danu Raharja.

Objectives:
To introduce the students how to implement array as an abstract data structure in MIPS
assembly language.

Method:

Translate an algorithm from pseudo-code into assembly language.

Preparation:

Read the chapter 2 of lecture textbook.

5.1 INTRODUCTION
Not like high level languages, Assembly language has no notion of an array at all.

Arrays like variables are treated as a block of memory that could be allocated with a

single directive, where the first element is given a label.

The array as the most important and most general data structure has the following

properties:

1. All elements must be the same size. The array is an homogeneous data

structure.

2. The size of an array is fixed. The number of elements is fixed.

3. A label (address) is tied to the first element of the array.

4. Traversing each element of an array needs an index or indices and the label as

the array's name.

5.2 ARRAY DECLARATION
With reference to the above properties, in assembly language to declare an array it

requires:

1. A label name,

2. The number of elements,

3. The size of each element,

4. The initial value of each element.

ICS-233 Computer Architecture & Assembly Language (Term 062) 2

A. Example:
.data

A01: .byte 'a', 'k', 'p', 5 # A01 is an array of 4 bytes: {'a', 'k', 'p', 5}
A02: .word 5, 6, -9, 7 # A02 is an array of 4 words: {5, 6, -9, 7}
B02: .space 40 # allocate 40 consecutive bytes, with storage uninitialized

could be used as a 40-element character array, or a
10-element integer array;
a comment should indicate which!

var1: .half 3 # create a single short integer variable with initial value 3
B03: .word -1:30 # allocate 40 consecutive words with each element

initialized with -1.

5.3 TRAVERSING SINGLE-DIMENSIONAL ARRAY
To access every element of an array, we have to know the address of that element.

Because all elements have the same size, the address of an element of the array can be

formulated as:

The address of ith-element (in byte) = starting address + size-of-element * i

1. The first element of the array is indexed 0.

2. The size-of-element is the number of bytes in a single array element.

3. The size-of-element either is one byte, 2 bytes, 4 bytes, or 8 bytes.

A. Example:
The following code fragment is to access the sixth element of table1:

.data
table1: .word 4, 5, 6, 7, 8, 9, 10, 21

.text
la $t0, table1
lw $t1, 20($t0)
addiu $t2, $t0, 20
lw $t1, 0($t2)

5.4 TWO-DIMENSIONAL ARRAYS
Two or higher dimensional arrays are treated as the same as simple single-dimensional

arrays.

To declare the array M[rows][cols] of byte-sized elements,

ICS-233 Computer Architecture & Assembly Language (Term 062) 3

1. Calculate the number of elements in the array: number-of-elements = rows *

cols.

2. Then you may declare as:

M: .byte 0:number_of_elements

5.5 STORAGE ORDER
As mentioned before that memory is organized as a single-dimensional array. Two-

dimensional arrays must be treated as simple single-dimensional arrays. Then, in

assembly language to declare two-dimensional arrays, we have to arrange the arrays as

single-dimensional arrays.

To do this, we have to know how to organize all elements of an array. There are two

different ways to organize the elements of two-dimensional array:

1. Row-major order: The array is organized as a sequence of ROWS. Most of

programming languages such as C follow this method.

2. Column-major order: The array is organized as a sequence of COLUMNS.

This order is being implemented in FORTRAN.

A. Address Calculation
Assume the row and column index starts from 0. The general formula to calculate the

byte address of the element [a, b] can be expressed as:

Row-major order: Starting Address + Size-of-element * (a * number-of-columns + b)

Column-major order: Starting Address + Size-of-element * (b * number-of-rows + a)

Example:
Suppose the array size has 2 rows and 3 columns:

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

ICS-233 Computer Architecture & Assembly Language (Term 062) 4

The array stored in row-major order:

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
0 n 2n 3n 4n 5n

Lower address Higher address

The array stored in column-major order:

(0,0) (1,0) (0,1) (1,1) (0,2) (1,2)
0 n 2n 3n 4n 5n

Lower address Higher address

Example:
Pseudo-code MIPS Assembly Language

int M[][] = new int[9][4];

for(int j=0; j<9; j++)
M[j][3] = 7;

 .data
M: .word 0:36
The size-of-element = 4 bytes.
a = j, b = 3, number-of-columns = 4 ; Then,
the offset of M[3][4] is 4 * (j * 4 + 3) = 4*(4*j) + 12
 .text
 la $t2, M
 li $t1, 9
 li $t0, 0
 li $t4, 7
L2: beq $t0, $t1, X2
 sll $t3, $t0, 4
 addiu $t3, $t3, 12
 addu $t3, $t3, $t2
 sw $t4, 0($t3)
 addiu $t0, $t0, 1
 j L2
X2:

ICS-233 Computer Architecture & Assembly Language (Term 062) 5

Example:
The solution of above example using pointer:

 .data
M: .word 0:36
 .text
 la $t2, M
 li $t1, 9
 li $t0, 0
 li $t4, 7
 addiu $t2, $t2, 12
L2: beq $t0, $t1, X2
 sw $t4, 0($t2)
 addiu $t0, $t0, 1
 addiu $t2, $t2, 16
 j L2
X2:

5.6 EXERCISES
1. Write a MIPS assembly language to sort an integer (32 bits) array in ascending

order using insertion sort algorithm. Use pointer technique.

2. Write a MIPS assembly language to transpose an integer matrix.

