
ICS-233 Computer Architecture & Assembly Lang. (Term 062) 1

LL aa bb ## 22 BB AA SS II CC SS TT RR UU CC TT UU RR EE

Instructor: I Putu Danu Raharja.

Objectives:
• Describe the general structure of MIPS assembly language programs.

• Learn to read and modify assembly language programs.

• Simulating the program using MARS.

Method:

Run and modify a simple MIPS assembly language program. Load and run a more
complex program.

Preparation:

Read the chapter 2 of lecture textbook.

Files to use:

lab1-01.asm.

What to Hand In:

Modified copy of lab1-01.asm.

2.1 DOWNLOAD AND INSTALL MARS
Download the program from the following URL:

http://courses.missouristate.edu/KenVollmar/MARS/index.htm

to the Desktop on your computer. Download also the accompanying help files.

2.2 THE COMPONENTS AND STRUCTURE OF AN ASSEMBLER PROGRAM
Now we are ready to start writing assembler programs. Let’s start by looking at the

minimum requirements of a working assembler program. Even a simple assembler

program requires quite a few lines. For instance, consider the following program:

 .data
prompt: .asciiz "\n Please Input a value "
bye: .asciiz "\n ** Have a good day **"
 .globl main
 .text
main:
 li $v0, 4 # system call code for print string
 la $a0, prompt # loads address of prompt into $a0
 syscall # print the prompt message

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 2

 li $v0, 5 # system call code for read integer
 syscall # reads the value into $v0
 beq $v0, $0, end # branch to end if $v0 equals 0
 addu $a0, $0, $v0
 li $v0, 1 # system call code for print integer
 syscall # print
 b main # branch to main
end:
 li $v0, 4 # system call code for print string
 la $a0, bye # loads address of bye into $a0
 syscall # print the string
 li $v0, 10 # terminate program run and
 syscall # return control to the OS.

This program contains the directives .DATA, .TEXT, .ASCIIZ, and .GLOBL.

Directives are required in every assembler program in order to define and control

memory space usage.

Directives only provide the framework for an assembler program, though; you also

need lines in your source code that actually DO something, lines like

beq $v0, $0, end

and

addu $a0, $0, $v0

,these are instruction mnemonics, corresponding to the instruction set of the MIPS32. In

addition, there are some pseudo-instruction that were created by the assemblers to

simplify translation and programming. These pseudo-instructions are not part of the

MIPS32 processor. Before you can use either instructions, pseudo-instructions or

directives, however you must first learn about the format of a line of assembler code.

2.3 THE FORMAT OF A LINE
Assembly language source code lines follow this format:

[label:] [instruction/directive] [operands] [#comment]

where [label] is an optional symbolic name; [instruction/directive] is either the

mnemonic for an instruction or pseudo-instruction or a directive; [operands] contains a

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 3

combination of one, two, or three constants, memory references, and register references,

as required by the particular instruction or directive; [#comment] is an optional comment.

A. Labels
Labels are nothing more than names used for referring to numbers and character strings

or memory locations within a program. Labels let you give names to memory variables,

values, and the locations of particular instructions. For instance, the above code

mentioned in Page 1 uses several labels:

The labels prompt and bye are equivalent to the addresses of two 8-bit variables;

they’re used to refer to those variables later in the code. The label main is equivalent to

the address of the first instruction

li $v0, 4

and the label end is equivalent to the address of another instruction

li $v0, 4

Labels can consist of the following characters:

A-Z a-z _ 0-9

The digits 0-9 cannot be used as the first character of a label. Each label must be

defined only once; that is, labels must be unique. Labels may be used as operands any

number of times.

A label may appear on a line by itself, that is, on a line without an instruction or

directive. In this case, the value of the label is the address of the instruction or directive

on the next line in the program. For instance, in the code

 b DoSubtract

DoSubtract:
 sub $s0, $zero, $t8

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 4

The next instruction executed after the b pseudo-instruction, which branches to the

label DoSubtract, is SUB $s0, $zero, $t8. The preceding example is exactly the same as

 b DoSubtract

DoSubtract: sub $s0, $zero, $t8

A label cannot be the same as any of the built-in symbols used in expressions. This

includes the register names ($at, $t2, $3, and so on), the instructions and the pseudo-

instructions used in expressions (add, sub, addi, and so on). You also should avoid using

any directives as label names.

Both labels that appear on lines without directives or instruction mnemonics and labels

that appear on lines with instructions must be end with a colon. The colon merely ends

the label, and is not part of the label itself.

By default all labels are local. It means that the label referring to an item that can be

used only within the file in which it is defined. A label can be made as external or global

by using the directive .globl. It is a label referring to an item that can be referenced from

files other than the one in which it is defined.

B. Instruction Mnemonics and Directives
The key field in a line of assembler code is the [instruction/directive] field. This field

may contain either an instruction mnemonic or a directive, two very different beasts.

MARS assembles each instruction mnemonics directly to the actual MIPS32 machine-

language code. Whenever you insert one instruction mnemonic in an assembler program,

the result is one corresponding machine-language instruction in the executable code.

Directives generate no executable code at all, but rather control various aspects of how

MARS32 operates. They are responsible for providing high-level features of MARS32

that make assembly language programming much easier.

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 5

TEXT tells the MARS that the subsequent items are stored in the user text segment.

This directive tells MARS32 exactly which text segment to place your instructions in.

DATA tells MARS that the subsequent items are stored in the data segment. You

should place your memory variables in this segment. For example,

 .DATA
First: .space 100
Second: .word 1, 2, 3
Third: .byte 99, 2, 3

C. Pseudo-instructions
Pseudo-instructions give MIPS a richer set of assembly language instructions than

those implemented by the hardware. For example, one of the frequent steps needed in

programming is to copy the value of one register into another register. This actually can

be solved easily by the instruction:

add $t0, $zero, $t1

However, it is more natural to use the pseudo-instruction:

move $t0, $t1.

The assembler converts this pseudo-instruction into the machine language equivalent

of the prior instruction.

2.4 BYTE ORDERING AND ENDIANNESS.
Bytes within larger CPU data formats—halfword, word, and doubleword—can be

configured in either big-endian or little-endian order. Endianness defines the location of

byte 0 within a larger data structure (in MIPS, bits are always numbered with 0 on the

right).

A. Big-Endian Order:
When configured in big-endian order, byte 0 is the most-significant (left-hand) byte.

For example, the following figure illustrates the byte order in a word:

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 6

Bit# Word
Address 31 24 23 16 15 8 7 0

12 12 13 14 15
8 8 9 10 11
4 4 5 6 7
0 0 1 2 3

B. Little-Endian Order
When configured in little-endian order, byte 0 is always the least-significant (right-

hand) byte. For example, the following figure illustrates the byte order in a word:

Bit# Word
Address 31 24 23 16 15 8 7 0

12 15 14 13 12
8 11 10 9 8
4 7 6 5 4
0 3 2 1 0

2.5 SOME MIPS INSTRUCTIONS
Instructions Description

lb Rdest, address Load Byte. Loads the byte at address in memory into the
LSB of Rdest. The byte is treated as a signed number; sign
extends to the remaining three bytes of Rdest.

lbu Rdest, address Load Byte Unsigned. This instruction is similar to lb
except that the byte is treated as an unsigned number. The
upper three bytes of Rdest are filled with zeros.

lh Rdest, address Load Halfword. Loads the half-word (two bytes) at
address in memory into the least significant two bytes of
Rdest. The 16-bit data are treated as a signed number; sign
extends to the remaining two bytes of Rdest.

lhu Rdest, address Load Halfword Unsigned. Same as lh except that the 16-
bit halfword is treated as an unsigned number.

lw Rdest, address Load Word. Loads the word (four bytes) at address in
memory into Rdest.

lui Rdest, imm. load constant in upper 16 bits of Rdest.
sb Rdest, address Store Byte. Stores the least significant byte of Rsrc at the

specified address in memory.
sh Rdest, address Store Halfword. Stores the least significant two bytes

(halfword) of Rsrc at the specified address in memory.
sw Rdest, address Store Word. Stores the four-byte word in Rsrc at the

specified address in memory.

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 7

Instructions Description
add Rdest,Rsrc1,Rsrc2 adds the contents of Rsrc1 and Rsrc2 and stores the result

in Rdest. The numbers are treated as signed integers. In
case of an overflow, an overflow exception is generated.

addu Rdest,Rsrc1,Rsrc2 Same as add except that no overflow exception is needed.
addi Rdest,Rsrc1, imm Rdest = Rsrc1 + 16-bit signed immediate. In case of an

overflow, an overflow exception is generated.
addiu Rdest,Rsrc1, imm Same as addi except that no overflow exception is needed.
sub Rdest,Rsrc1,Rsrc2 Rdest = Rsrc1 − Rsrc2. The numbers are treated as signed

integers. In case of an overflow, an overflow exception is
generated.

subu Rdest,Rsrc1,Rsrc2 Same as sub except that no overflow exception is needed.
Assembler pseudoinstructions:
la Rdest, var Load Address. Loads the address of var into Rdest.
li Rdest, imm Load Immediate. Loads the immediate value imm into

Rdest.

2.6 SYSTEM I/O (INPUT/OUTPUT)
The developers of the MARS simulator wrote simple I/O functions. Access to these

functions is accomplished by generating a software exceptions. The MIPS instruction a

programmer uses to invoke a software exception is syscall. There are 10 different

services provided. In your programs, you specify what services you want to perform by

loading register $v0 with a value from 1 to 10. The following table describes some

system services:

Service Code in $v0 Argument(s) Result(s)
Print integer 1 $a0 = number to be printed
Print String 4 $a0 = address of string in

memory

Read Integer 5 Number returned in $v0.
Read String 8 $a0 = address of input buffer

in memory.
$a1 = length of buffer (n)

Exit 10

2.7 ASSEMBLING, LINKING, AND EXECUTING PROCESSES
Before you can run the program, though, you have to convert the source code into an

executable (able to be run or executed) form. This requires two additional steps,

assembling and linking as shown in the following figure.

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 8

2.8 LAB EXERCISES:
1. Start the MARS simulator and load the lab1-01.asm file into the simulator. Try

running the program with both the run command and the step command.

2. Where (to which window) is the output data displayed?

3. Write down the address of the first instruction of the program (see the text window)

4. Write down the address of the first data of the program (see the data window)

5. Write down the value of the register $sp just before you start the program.

6. What is the representation of the newline symbol "\n" in memory (write down the

hexadecimal value)?

7. What is the hexadecimal representation in memory of the string "abcd"?

8. Single step the program and write down the memory addresses and hexadecimal

codes that represent the instruction sequence corresponding to this line:

Create a New Program

Edit & Save

Assemble

Run

Error?

Need
Change? STOP

Yes

Yes

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 9

la $a0, endl
li $v0, 4

9. Delete the quotation in the declaration of endl. Save the file and then assemble

again the file. Run the program. What happens? Describe?

10. Deliberately insert a syntax error. How does MARS help you in locating the source

of the errors? Describe below from your limited experience.

11. Change the code in line 21 and 22 to:

li $t0, 0x70000000
li $t1, 0x10000000

12. Save the file and then assemble again the file. Run the program. What happens?

Describe?

13. Change the code in the line 23 to:

addu $a0, $t0, $t1

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 10

Save the file and then assemble again the file. Then set a breakpoint at the

instruction after the instruction addu $a0,$t0,$t1. Run the program. What is the

value of $a0? Continue to run the program.

14. Insert the following codes in the line 34:

la $a0, endl
sh $t1, 0($a0)

15. Save the file and then assemble again the file. Run the program. What happens?

Describe?

16. Remove the codes you inserted in step 14. Change the data description in the line

41 to:

msg1: .ascii "abcdef"

Save the file and then assemble again the file. What is the hexadecimal represent-

ation in memory of the data in the line 43-44?

17. Exit from MARS.

2.9 EVALUATION
Review the material for any evaluation questions.

