
COE 301/ICS 233, Term 172

Computer Architecture & Assembly Language

HW# 3 Solution

Q.1. Write a MIPS assembly program that does the following:

(i) Ask the user to enter the number of rows R and read it.

(ii) Ask the user to enter the number of columns C and read it.

(iii) Ask the user to enter a two-dimensional array of RxC characters. Elements of a

single row should be separated by a single space and each row is read in a new line.

(iv) Print the entered array in a new line printing also its entered dimensions.

(v) Ask the user to enter two row numbers

(vi) Exchange the two entered rows and print the array after the exchange.

A sample execution of the program is shown below:

Enter number of rows in the array: 3

Enter number of columns in the array: 5

Enter an array of 3x5 characters:

0 1 2 3 4

5 6 7 8 9

a b c d e

The entered 3x5 array is:

0 1 2 3 4

5 6 7 8 9

a b c d e

Enter a row number: 0

Enter another row number: 2

The array after exchanging Row 0 and Row 2 is:

a b c d e

5 6 7 8 9

0 1 2 3 4

################# Data segment #####################

.data

msg1: .asciiz "Enter number of rows in the array:"

msg2: .asciiz "Enter number of columns in the array:"

msg3: .asciiz "Enter an array of "

msg4: .asciiz " characters:\n"

msg5: .asciiz "The entered "

msg6: .asciiz " array is:\n"

msg7: .asciiz "Enter a row number:"

msg8: .asciiz "Enter another row number:"

msg9: .asciiz "The array after exchanging Row "

msg10: .asciiz " and Row "

msg11: .asciiz " is:\n"

Array: .space 400 # it is assumed that we have a max. array size of 20x20

Buffer: .space 40

################# Code segment #####################

.text

.globl main

main: # main program entry

Read number of rows and columns

 la $a0, msg1

 li $v0, 4

 syscall

 li $v0, 5

 syscall

 move $s0, $v0 # Number of rows

 la $a0, msg2

 li $v0, 4

 syscall

 li $v0, 5

 syscall

 move $s1, $v0 # Number of columns

Printing messgae for reading the array

 la $a0, msg3

 li $v0, 4

 syscall

 move $a0, $s0

 li $v0, 1

 syscall

 li $a0,'x'

 li $v0, 11

 syscall

 move $a0, $s1

 li $v0, 1

 syscall

 la $a0, msg4

 li $v0, 4

 syscall

Reading the array and storing it

 la $s2, Array

 move $t0, $s0

NextR:

 la $a0, Buffer

 move $a1, $s1

 sll $a1, $a1, 1

 addi $a1, $a1, 1

 li $v0, 8

 syscall

 move $t1, $s1

NextC:

 lb $t2, ($a0)

 sb $t2, ($s2)

 addi $a0, $a0, 2

 addi $s2, $s2, 1

 addi $t1, $t1, -1

 bnez $t1, NextC

 addi $t0, $t0, -1

 bnez $t0, NextR

Displaying the entered array

 la $a0, msg5

 li $v0, 4

 syscall

 move $a0, $s0

 li $v0, 1

 syscall

 li $a0,'x'

 li $v0, 11

 syscall

 move $a0, $s1

 li $v0, 1

 syscall

 la $a0, msg6

 li $v0, 4

 syscall

 la $a0, Array

 move $a1, $s0

 move $a2, $s1

 jal DispArray

Getting First Row

 la $a0, msg7

 li $v0, 4

 syscall

 li $v0, 5

 syscall

 move $s3, $v0 # First row to be exchanged

Getting Second Row

 la $a0, msg8

 li $v0, 4

 syscall

 li $v0, 5

 syscall

 move $s4, $v0 # Second row to be exchanged

Exchanging the two rows

 la $a0, Array

 move $a1, $s1

 move $a2, $s3

 move $a3, $s4

 jal ExchgRows

Displaying the array after the exchange

 la $a0, msg9

 li $v0, 4

 syscall

 move $a0, $s3

 li $v0, 1

 syscall

 la $a0, msg10

 li $v0, 4

 syscall

 move $a0, $s4

 li $v0, 1

 syscall

 la $a0, msg11

 li $v0, 4

 syscall

 la $a0, Array

 move $a1, $s0

 move $a2, $s1

 jal DispArray

 li $v0, 10 # Exit program

 syscall

A procedure that receives in $a0 the address of an array,

in $a1 the number of rows, and in $a2 the number of columns

and displays the array.

DispArray:

 move $t0, $a0

NR:

 move $t1, $a2

NC:

 lb $a0, ($t0)

 li $v0, 11

 syscall

 li $a0, ' '

 syscall

 addi $t0, $t0, 1

 addi $t1, $t1, -1

 bnez $t1, NC

 li $a0, 10

 syscall

 addi $a1, $a1, -1

 bnez $a1, NR

 jr $ra

A procedure that receives in $a0 the address of an array,

in $a1 the number of columns, and in $a2 & $a3 the two

rows to be exchanged.

ExchgRows:

Compute starting address of first row

 mul $t0, $a1, $a2

 add $t0, $t0, $a0

Compute starting address of second row

 mul $t1, $a1, $a3

 add $t1, $t1, $a0

Performing the exchange

Next:

 lb $t3, ($t0)

 lb $t4, ($t1)

 sb $t3, ($t1)

 sb $t4, ($t0)

 addi $t0, $t0, 1

 addi $t1, $t1, 1

 addi $a1, $a1, -1

 bnez $a1, Next

 jr $ra

Q.2. You are required to write a MIPS assembly program to implement a pseudo random

generator using Liner Feedback Shift Register (LFSR). An example of an 8-bit LFSR is

shown below:

Two important characteristics of an LFSR are the Feedback Polynomial, which

determines the flip-flops (FFs) that are XORed to compute the shifted bit, and the seed

which determines the initial content of the FFs. Depending on the Feedback polynomial,

the LFSR can generate a maximal-length sequence without repetition, or it may not. The

seed can be any number other than 0.

The 8-bit LFSR shown above is a maximal-length i.e. it is guaranteed to generate a

random sequence in the range from 1 to 255 before it repeats again.

The Feedback polynomial for the above LFSR can be represented as 10001101. Note that

1 indicates that there is feedback connection, while 0 indicates that there is no feedback

connection.

(i) Write a procedure READB to read a binary number and store it in $v0. The

procedure should report an error message and ask the user to reenter the number if

the decimal value of the entered number is 0. Also, the user does not have to enter

the whole 8-bits. If he enters less than 8 bits and hits return the remaining most

significant bits should be assumed 0. Also, if any digit entered is other than a binary

digit, an error message should be reported.

(ii) Write a procedure, RAND8, that implements an 8-bit pseudo random generator. The

procedure should be given the Feedback polynomial, and the seed as parameters in

$a0 and $a1 registers and it should generate the next random number in $v0.

(iii) Ask the user to enter an 8-bit feedback ploynomial and an 8-bit seed in binary. Use

the procedure READB for this purbose. Then, ask the user to enter a string of

characters. Then, encrypt the string using RAND8 as follows. Each character is

encrypted by XORing the least significant 4-bits of the ASCII code of the character

with the least significant 4 bits and the most significant 4-bits of the generated

random number . For example, assume the character to be encrypted is 'A'=0x41 and

the random number is 0xA1. Then, the encrypted character will have the ASCII code

0x4A='J'. To decrypt the character, the decrypted character 0x4A='J', will be XORed

with the same corresponding random number used for encryption i.e. 0xA1 and this

will generate the original character 0x41='A'. As an example, show the encryption of

the string "This is an interesting assignment". Then, rerun your program giving it

the encrypted string and it should correctly decrypt it to "This is an interesting

assignment". Encrypt this with the feedback polynomial 10001101 and a seed of

00001111.

################# Data segment #####################

.data

msg1: .asciiz "Enter an 8-bit feedback polynomial: "

msg2: .asciiz "Enter an 8-bit seed:"

msg3: .asciiz "Enter a message to encrypt/decrypt: "

msg4: .asciiz "Encrypted/Decrypted message is: "

buffer: .space 101 # Assuming maximum message length is 100 characters

bnum: .space 9

Errmsg: .asciiz "One of the entered digits is not a binary digit, renter the number

again\n"

Errmsg2: .asciiz "Entered number is zero, renter the number again\n"

################# Code segment #####################

.text

.globl main

main: # main program entry

Getting an 8-bit feedback polynomial

 li $v0, 4

 la $a0, msg1

 syscall

 jal ReadB

 move $s0, $v0

Getting an 8-bit seed

 li $v0, 4

 la $a0, msg2

 syscall

 jal ReadB

 move $s1, $v0

Reading the message yo be encrypted/decrypted

 li $v0, 4

 la $a0, msg3

 syscall

 li $v0, 8

 la $a0, buffer

 li $a1, 101

 syscall

Encrypting/Decrypting message

 li $v0, 4

 la $a0, msg4

 syscall

 li $s4, 10

 li $s5, 100 # Loop counter

 la $s2, buffer

NextChar:

 lb $s3, ($s2)

 beq $s3, $s4, DoneE

Generating next random number

 move $a0, $s0

 move $a1, $s1

 jal RAND8

 move $s1, $v0 # Storing returned number as next seed

 move $t2, $v0 # encrypting/decrypting character

 srl $t2, $t2, 4

 andi $v0, $v0, 15

 xor $v0, $v0, $t2

 xor $s3, $s3, $v0

 sb $s3, ($s2)

 addi $s2, $s2, 1

 addi $s5, $s5, -1

 bnez $s5, NextChar

DoneE:

 li $v0, 4

 la $a0, buffer

 syscall

 li $v0, 10 # Exit program

 syscall

Procedure for reading an 8-bit binary number

The read number will be returned in $v0.

ReadB:

Reading the number as a string

Again:

 xor $v1, $v1, $v1 # to hold binary number

 li $v0, 8

 la $a0, bnum

 move $a2, $a0

 li $a1, 9

 syscall

 li $t0, 8 #loop counter

 li $t2, 10

 li $t3, '0'

 li $t4, '1'

Next:

 lb $t1, ($a2)

 beq $t1, $t2, Done

 sll $v1, $v1, 1

 beq $t1, $t3, Bdigit

 bne $t1, $t4, Error

Bdigit:

 andi $t1, $t1, 1

 or $v1, $v1, $t1

 addi $a2, $a2, 1

 addi $t0, $t0, -1

 bnez $t0, Next

 bnez $v1, Done

 la $a0, Errmsg2

 li $v0, 4

 syscall

 j Again

Error:

 la $a0, Errmsg

 li $v0, 4

 syscall

 j Again

Done:

 move $v0, $v1

 jr $ra

Procedure for implementing an 8-bit LFSR-based pseudo random

number generater. The procedure is given the Feedback polynomial,

and the seed as parameters in $a0 and $a1 registers and it generates

the next random number in $v0.

RAND8:

 move $v0, $a1

 and $a1, $a1, $a0 #Mask the bits that should not be Xored

Count number of 1's in $a0

 li $t0, 8 # Loop counter

 xor $t1, $t1, $t1 # Number of ones

Loop:

 move $t2, $a1

 andi $t2, $t2, 1

 add $t1, $t1, $t2

 srl $a1, $a1, 1

 addi $t0, $t0, -1

 bnez $t0, Loop

 srl $v0, $v0, 1

 andi $t1, $t1, 1 # Check if number of ones is even or odd

 beqz $t1, Skip

 ori $v0, 0x0080

Skip:

 jr $ra

Snapshot of running the program is given below:

Enter an 8-bit feedback polynomial: **** user input : 10001101

Enter an 8-bit seed:**** user input : 00001111

Enter a message to encrypt/decrypt: **** user input : This is an interesting

assignment

Encrypted/Decrypted message is: [gnx%cv"`n(e`sf{i}{nmf i•ubjhnlbr

Enter an 8-bit feedback polynomial: **** user input : 10001101

Enter an 8-bit seed:**** user input : 00001111

Enter a message to encrypt/decrypt: **** user input : [gnx%cv"`n(e`sf{i}{nmf

i•ubjhnlbr

Encrypted/Decrypted message is: This is an interesting assignment

