KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 301 Computer Organization ICS 233 Computer Architecture & Assembly Language

Term 161 Lecture Breakdown

Lec #	Date	Topics	Ref.
1	U18/9	Syllabus and Course Introduction.	
2	T 20/9	Assembly and Machine Language, Compiler and Assembler, Instructions and Machine Language, Instruction Fields, Advantages of High-Level Languages.	Chapter 1: Computer Abstractions and Technology 1.1-1.5
	TH 22/9	National Day Holiday	
3	U 25/9	Why Learn Assembly Language? Assembly vs. High-Level Languages, Assembly Language Programming Tools. Assemble and Link Process, Components of a Computer System, Memory, Address Space. Address, Data, and Control Bus.	Chapter 1: Computer Abstractions and Technology 1.1-1.5
4	T 27/9	Memory Devices: RAM, DRAM, SRAM, ROM. Memory Interleaving.	Chapter 1: Computer Abstractions and Technology 1.1-1.5
5	TH 29/9	Magnetic Disk Storage, Processor-Memory Performance Gap. Memory Hierarchy, Processor: Datapath, Control, Program Counter.	Chapter 1: Computer Abstractions and Technology 1.1-1.5
6	U 2/10	Processor: Datapath, Control, Program Counter, Instruction Register, Fetch-Execute Cycle. Technology Improvements. Positional Number Systems, Binary and Hexadecimal Numbers, Base Conversions. Integer Storage Sizes. Binary and Hexadecimal Addition. Signed Integers and 2's Complement Notation.	Chapter 1: Computer Abstractions and Technology 1.1-1.5
7	T 4/10	Signed Integers and 2's Complement Notation, Sign Extension. Two's Complement of a Hexadecimal, Binary & Hexadecimal Subtraction. Ranges of Signed Integers. Carry	Chapter 2: Instructions: Language of the Computer (2.1-2.2)

	1		<u> </u>
		and Overflow. Character representation, parity bit. Overview of the MIPS Processor.	
0	TH 6/10	MIPS General-Purpose Registers,	Chapter 2:
8	TH 6/10	Conventions, Instruction Formats. Instruction	Instructions:
		Categories. Instruction Categories. R-Type	Language of the
		Arithmetic, Logical, and Shift Instructions,	Computer (2.1-2.6)
		Integer Add /Subtract Instructions.	, ,
9	U 9/10	Logical Bitwise Instructions: AND, OR, XOR,	Chapter 2:
	0 3/10	NOR, Shift Instructions: sll, srl sra, sllv, srlv,	Instructions:
		srav. Use of shift instructions in performing	Language of the
		multiplication and division.	Computer (2.1-2.6)
10	T 11/10	I-Type Format, I-Type ALU Instructions, 32-	Chapter 2:
		bit Constants, Applications of logical	Instructions:
		instructions. (Quiz#1)	Language of the
			Computer (2.1-2.7)
11	TH 13/10	J-Type Format. Conditional Branch	Chapter 2:
		Instructions. Set on Less Than Instructions,	Instructions:
		Pseudo-Instructions. Translating an IF	Language of the
		Statement.	Chapter (2.1-2.7)
12	U 16/10	Compound Expression with AND, Compound	Chapter 2: Instructions:
		Expression with OR, Signed & Unsigned Comparison. Load and Store Instructions: Load	Language of the
		and Store Word, Load and Store Byte and	Computer (2.1-2.7)
		Halfword. Translating a WHILE Loop. Using	Computer (2.1-2.7)
		Pointers to Traverse Arrays.	
13	T 18/10	Using Pointers to Traverse Arrays. Copying a	2.10
13	1 10/10	String. Summing an Integer Array. Addressing	
		Modes, Branch / Jump Addressing Jump and	
		Branch Limits, PC-Relative Addressing.	
		Summary of RISC Design.	
14	TH 20/10	Assembly Language Statements, Instructions,	Appendix A.9-A.10
		Comments, Program Template. Data	
		Definition Statement. Data directives,	
		Examples of Data Definitions, Memory	
		Alignment. Byte Ordering, Big & Little	
	S 22/10	Endians. Major Exam I	
		,	Annandiy A O A 10
15	U 23/10	System Calls, Sum of Three Integers Program. Case Conversion Program. File operations.	Appendix A.9-A.10
		Introduction to Procedures.	
1.0	T 25/10	Procedures, Call / Return Sequence,	Charata a 2
16	T 25/10	Instructions for Procedures: JAL, JR, JALR.	Chapter 2:
		Parameter Passing, Stack Frame, Preserving	Instructions:
		Registers.	Language of the Computer (2.8)
17	TH 27/10	Parameter Passing, Stack Frame, Preserving	Chapter 2:
''	1112//10	Registers. Selection Sort Procedure. Recursive	Instructions:
		Procedures: factorial.	Language of the
			Computer (2.8)
	TH 27/10	Last Day for Dropping with W	

	1	TT 1 1 No Let 11 ct TT 1 Ct 1	C1
18	U 30/10	Unsigned Multiplication Hardware, Signed	Chapter 3:
		Multiplication.	Arithmetic for
			Computers (3.3)
19	T 1/11	Signed Multiplication Hardware, Fast	Chapter 3:
		Multiplication, Unsigned Division. Division	Arithmetic for
		Algorithm & Hardware.	Computers (3.3-
			3.4)
20	TH 3/11	Unsigned Division. Division Algorithm &	Chapter 3:
		Hardware. Signed Division, Multiplication and	Arithmetic for
		Division in MIPS. Integer to String Procedure.	Computers (3.3-
			3.4)
21	U 6/11	Integer to String Procedure. Floating-Point	Chapter 3:
		Numbers, Floating-Point Representation. IEEE	Arithmetic for
		754 Floating-Point Standard, Normalized	Computers (3.4-
		Floating Point Numbers, Biased Exponent	3.5)
		Representation. Converting FP Decimal to	
		Binary.	
22	T 8/11	Converting FP Decimal to Binary. Largest &	Chapter 3:
		Smallest Normalized Float. (Quiz#2)	Arithmetic for
			Computers (3.5)
23	TH 10/11	Zero, Infinity, and NaN, Denormalized	Chapter 3:
		Numbers. Floating-Point Comparison. Simple	Arithmetic for
		6-bit Floating Point Example. Floating Point	Computers (3.5)
		Addition/Subtraction.	
	13-17	Mid-Term break	
	Nov.		
24	U 20/11	Floating Point Addition/Subtraction, Floating	Chapter 3:
		Point Adder Block Diagram. Floating Point	Arithmetic for
		Multiplication.	Computers (3.5)
25	T 22/11	Floating Point Multiplication, Extra Bits to	Chapter 3:
		Maintain Precision, Guard Bit. (Quiz#3)	Arithmetic for
			Computers (3.5)
26	TH 24/11	Guard Bit, Round and Sticky bits. IEEE 754	Chapter 3:
		Rounding Modes. MIPS Floating-Point	Arithmetic for
		Instructions: Arithmetic Instructions,	Computers (3.5)
		Load/Store Instructions. Data Movement	
		Instructions, Convert Instructions, Compare	
		and Branch Instructions, FP Data Directives,	
		FP Syscall Services. Example: Area of a circle.	
27	U 27/11	Single Cycle Processor Design: Designing a	4.1-4.3
		Processor: Step-by-Step. Review of MIPS	
		Instruction Formats, Register Transfer Level	
		(RTL). Instructions Executed in Steps,	
		Requirements of the Instruction Set.	
28	T 29/11	Requirements of the Instruction Set.	4.1-4.3
		Components of the Datapath. Register	
		Element, MIPS Register File, Tri-State	
		Buffers. Designing the MIPS Register File.	
		Building a Multifunction ALU.	
			-

29	TH 1/12	Building a Multifunction ALU, Instruction and Data Memories, Clocking Methodology, Determining the Clock Cycle, Clock Skew. Instruction Fetching Datapath, Datapath for R-type Instructions. Datapath for I-type ALU Instructions, Combining R-type & I-type Datapaths.	4.1-4.3
	TH 1/12	Last Day for Dropping all Courses with W	
30	U 4/12	Controlling ALU Instructions, Details of the Extender, Controlling the Execution of Load & Store. Adding Jump and Branch to Datapath. Controlling the Execution of Jump & Branch. Main Control.	4.1-4.4
31	T 6/15	Main Control. ALU Control. (Quiz#4)	4.1-4.4
32	TH 8/12	Worst Case Timing (Load Instruction). Review of Control Unit Design.	4.1-4.4
	S 10/12	Major Exam II	
33	U 11/12	What is Performance? Factors affecting execution time. Response Time and Throughput, Definition of Performance, CPU Execution Time, Improving Performance. Clock Cycles per Instruction (CPI), Performance Equation.	1.6
34	T 13/12	Factors Impacting Performance. Determining the CPI.	1.6
35	TH 15/12	Determining the CPI. Performance Comparison Examples.	1.6
36	U 18/12	Amdahl's Law. Benchmarks, The SPEC CPU2000 Benchmarks. Pipelined Processor Design: Pipelining Example. Serial execution versus Pipelining.	1.6 & 4.5-4.6
37	T 20/12	Synchronous Pipeline, Pipeline Performance. Pipelined Datapath. Instruction—Time Diagram, Single-Cycle vs. Pipelined Performance.	4.5-4.6
38	TH 22/12	Pipelined Control. Pipeline Hazards, Structural Hazards, Resolving Structural Hazards, Data Hazards. Implementing Forwarding.	4.6-4.8
39	U 25/12	RAW Hazard Detection. Forwarding Unit. Load Delay, Detecting RAW Hazard after Load. (Quiz#5)	4.8
40	T 27/12	Hazard Detection and Stall Unit. Compiler Scheduling, Reducing the Delay of Branches.	4.8
41	TH 29/12	Branch Hazard Alternatives, Delayed Branch. Zero-Delayed Branch, Branch Target and Prediction Buffer. Dynamic Branch Prediction, 1-bit & 2-bit Prediction Scheme.	4.8
	TH 29/12	Dropping all Courses with WP/WF	

42	U 1/1	Random Access Memory, Typical Memory Structure, Static RAM Storage Cell, Dynamic RAM Storage Cell, DRAM Refresh Cycles Trends in DRAM. Expanding the Data Bus Width, Increasing Memory Capacity by 2 ^k . Processor-Memory Performance Gap. Principle of Locality of Reference.	5.1-5.3
43	T 3/1	Block Placement: Direct Mapped. Fully Associative Cache, Set-Associative Cache. Write Policy.	5.1-5.4
44	TH 5/1	Set-Associative Cache. Write Policy, Write Miss Policy, Write Buffer. Replacement Policy, Cache Performance and Memory Stall Cycles: Hit Rate and Miss Rate, Memory Stall Cycles.	5.1-5.4
45	U 8/1	Memory Stall Cycles, CPU Time with Memory Stall Cycles. Average Memory Access Time. Improving Cache Performance: Average Memory Access Time, Small and Simple Caches, Larger Size and Higher Associativity, Larger Block Size.	5.1-5.4