
Page 8 of 8

ICS 233 - Computer Architecture
& Assembly Language

Final Exam – Fall 2012
Wednesday, January 9, 2013
8:00 – 10:00 AM
Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name:

Student ID:

	Q1
	/ 20
	Q2
	/ 20

	Q3
	/ 20
	Q4
	/ 15

	Q5
	/ 15
	Q6
	/ 15

	Total
	 / 105

Important Reminder on Academic Honesty
Using unauthorized information on an exam, peeking at others work, or altering graded exams to claim more credit are severe violations of academic honesty. Detected cases will receive a failing grade in the course.
Q1. (20 points) True or False? Explain why true, or give the correct answer for a full mark.

a)
A pipelined datapath must have separate instruction and data memories because the format of instructions and data is different.

b)
Increasing the size of a cache reduces the cache miss rate but not the miss penalty.

c)
Allowing ALU instructions to complete earlier and write back their result in the 4th stage rather than the 5th stage improves the performance of a MIPS 5-stage pipeline.

d)
In the MIPS 5-stage pipeline, all RAW data hazards can be eliminated by forwarding.

e)
Each block in a write-through cache has a Modified bit to indicate whether the block is modified or not.

f)
(5 pts) Describe the branch target and prediction buffer. Draw this buffer. Which stage of the pipeline uses this buffer?

Q2.
(20 pts) Consider a direct-mapped cache with 1024 blocks and a block size = 64 bytes
a)
(4 pts) Find the number of tag bits, index bits, and offset bits for a 32-bit address.

c)
(4 pts) Find the number of bits required to store all the valid and tag bits in the cache.

d)
(12 pts) Starting with an empty cache, show the tag, index, and byte offset for each address in hexadecimal and indicate whether a hit or a miss.

	Address
	Tag
	Index
	Offset
	Hit/Miss

	0x001F3A70
	
	
	
	

	0x001F3A74
	
	
	
	

	0x001F3A80
	
	
	
	

	0x001F3A8A
	
	
	
	

	0x001F3AB4
	
	
	
	

	0x002CFA40
	
	
	
	

	0x002CFA50
	
	
	
	

	0x0030BA94
	
	
	
	

	0x001F3A70
	
	
	
	

	0x001F3A84
	
	
	
	

	0x00407A40
	
	
	
	

	0x00407A54
	
	
	
	

Q3.
(20 pts) Consider the following piece of code:

int A[2048];
for (i=0;i<1024;i++) { A[i] = A[i] + A[i+1024];}

Each iteration of the for loop requires two load instructions to load A[i] and A[i+1024], and one store instruction to store the new value of A[i]. All load and store instructions address a direct-mapped data cache. Each cache block is 16-byte long and contains four integer elements of array A. The cache capacity is 4 KB only. Assume further that the data cache starts out empty.

a)
(2 pts) How many blocks of data exist in the data cache?

b)
(6 pts) What is the number of data cache hits and misses caused by the for loop, and what is the miss rate?

c)
(4 pts) Assume each iteration of the above for loop takes 6 cycles to execute. However, each cache miss adds 20 cycles to the execution time. What is the overall execution time (in clock cycles) of the above for loop?
d)
(8 pts) The data cache is now redesigned to have a larger capacity and block size. The new cache capacity is 8 KB of data and the new block size is 32 bytes. Each cache block has 8 integer elements of array A. Starting with an empty cache, what is the number of cache hits and misses in the for loops? What is the overall execution time if each iterate takes 6 cycles to execute, but each cache miss adds 20 cycles to the execution time? What is the speedup factor of the new cache design?
Q4.
(15 pts) Consider the following MIPS assembly language code:
I1:
ADDI
$a1, $0, 100
$a1 = loop counter = 100

I2:
LW
$t0, 0($a0)
$t0 = MEM[$a0]

I3:
LW
$t1, 4($t0)
$t1 = MEM[$t0 + 4]

I4:
ADD
$t2, $t0, $t1
$t2 = $t0 + $t1

I5:
SW
$t2, 8($t0)
MEM[$t0 + 8] = $t2
I6:
ADDI
$a1, $a1, -1
$a1 = $a1 – 1

I7:
ADDI
$a0, $a0, 4
$a0 = $a0 + 4

I8:
BNE
$a1, $0, I2
if ($a1 != 0) goto I2
a)
(10 pts) Complete the following table showing the timing of the above code on a 5-stage pipeline (IF, ID, EX, MEM, WB) that supports forwarding. Draw an arrow showing forwarding between the stage that provides the data and the stage that receives the data. Show all stall cycles (draw an X in the box). The branch delay is 1 clock cycle.
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

	I1: ADDI
	IF
	ID
	EX
	-
	WB
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I2: LW
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I3: LW
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I4: ADD
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I5: SW
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I6: ADDI
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I7: ADDI
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I8: BNE
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I2: LW
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	I3: LW
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b)
(5 pts) Count the total number of clock cycles for all 100 iterations. What is the average CPI? (don’t count the first instruction outside the loop).
Q5.
(15 pts) Consider the following MIPS program, which locates the maximum element of an array of words:
.data

array: .word 2, 4, 3, 5, 6, 1

.text

la
$a0, array
address of first element

add
$a1, $a0, 20
address of last element

move
$v0, $a0
$v0 = max pointer

lw
$v1, ($v0)
$v1 = max value

loop:
addi
$a0, $a0, 4
point to next array[i]

lw
$t0, 0($a0)
$t0 = value of array[i]

slt
$at, $v1, $t0
(max < array[i])?

beq
$at, $0, skip
if false then skip

move
$v0, $a0
$v0 = new max pointer

move
$v1, $t0
$v1 = new max value
skip:
bne
$a0, $a1, loop
loop back if more elements

a)
(5 pts) Show the outcomes of each conditional branch instruction (beq and bne) due to the execution of the program (show T for taken and N for not taken for each branch instruction and each iteration).

BEQ Outcomes:

BNE Outcomes:

b)
(5 pts) List the predictions (show T for predict Taken and N for predict Not-taken) of each conditional branch (beq and bne), and the overall accuracy (percent of true predictions) for a 1-bit predictor, initialized to predict not taken.

BEQ Predictions:

BNE Predictions:

Overall Accuracy:

c)
(5 pts) List the predictions (show T for predict Taken and N for predict Not-taken) of each conditional branch (beq and bne), and the overall accuracy (percent of true predictions) for a 2-bit predictor, initialized to weakly predict not taken.

BEQ Predictions:

BNE Predictions:

Overall Accuracy:

Q6.
(15 points) Describe the effect that a single stuck-at-0 or stuck-at-1 fault (the signal is always 0 or is always 1 regardless of what it should be) would have for the control signals shown below, in the single-cycle datapath. Which instructions, if any, will NOT work correctly? Explain why.

Consider each of the following faults separately:
a)
RegWrite control signal stuck-at-1

b)
RegDst control signal stuck-at-0 = Rt

c)
ALUScr control signal stuck-at-0 = BusB

d)
MemtoReg control signal stuck-at-0 = ALU Result

e)
Jump control signal stuck-at-1

Additional page if needed

