
 Page 1 of 11

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering

Computer Engineering Department

COE 301 COMPUTER ORGANIZATION

ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Term 171 (Fall 2017-2018)

Final Exam

Tuesday Jan. 2, 2018

7:00-9:30 PM

Time: 150 minutes, Total Pages: 12

Name: _KEY______________________ ID:__________________ Section: _______

Notes:

 Do not open the exam book until instructed

 Answer all questions

 All steps must be shown

 Any assumptions made must be clearly stated

 Mobile phones must be switched off

Question Max Points Score

Q1 17

Q2 21

Q3 13

Q4 24

Total 75

Dr. Aiman El-Maleh

Dr. Marwan Abu-Amara

 Page 2 of 11

[17 Points]

(Q1)

Compare the performance of a single-cycle processor and a multi-cycle processor. The

delay times are as follows:

Instruction memory access time = 300 ps Data memory access time = 300 ps

Instruction Decode and Register read = 200 ps Register write = 100 ps

ALU delay = 200 ps

Ignore the other delays in the multiplexers, wires, etc. Assume the following instruction mix:

50% ALU, 10% load, 10% store, 10% branch, and 20% jump.

a) (4 points) Compute the delay for each instruction class and the clock cycle for the single-

cycle processor.

Instruction

Class

Instruction

Memory

Decode and

Register Read
ALU

Data

Memory

Write

Back

Total

Delay

ALU 300 ps 200 ps 200 ps 100 ps 800 ps

Load 300 ps 200 ps 200 ps 300 ps 100 ps 1100 ps

Store 300 ps 200 ps 200 ps 300 ps 1000 ps

Branch 300 ps 200 ps 200 ps 700 ps

Jump 300 ps 200 ps 500 ps

Clock cycle for the single-cycle processor = 1100 ps = 1.1 ns

b) (3 points) Compute the clock cycle and the average CPI for the multi-cycle processor.

Clock cycle for the multi-cycle processor = max(300, 200, 100) = 300

CPI for the multi-cycle processor = (0.5  4)+(0.1  5)+(0.1  4)+(0.1  3)+(0.2  2) = 3.6

c) (2 points) Determine quantitatively if there is a speedup when using the multi-cycle

processor.

Speedup = (1100  1) / (300  3.6) = 1.0185

 Page 3 of 11

d) Assume that the load and the store instructions have been modified to use register-indirect

addressing with a zero offset. Hence, there is NO need for the ALU to compute the

memory address. The load and store instructions will have the following format, where Rs

is the register that contains the memory address.

LW Rt, (Rs) # No immediate constant used
SW Rt, (Rs) # No immediate constant used

Find the following:

i. (3 points) The clock cycle and the average CPI for the modified multi-cycle processor.

Clock cycle for the modified multi-cycle processor = max(300, 200, 100) = 300

CPI for the modified multi-cycle processor = (0.5  4)+(0.1  4)+(0.1  3)+(0.1  3)+(0.2

 2) = 3.4

ii. (2 points) Determine quantitatively if there is a speedup when using the modified multi-

cycle processor instead of the original multi-cycle processor.

Speedup of modified multi-cycle processor over original multi-cycle processor = 3.6/3.4 =

1.0588

e) (3 points) Assume that a program has the following instruction mix: 50% ALU, 10%

load, 10% store, 10% branch, and 20% jump. We want to improve the execution time of

the program on the original single-cycle processor by a factor of 1.25. Assume that the

execution time for the Jump instructions was enhanced to run 4 times faster. Determine

quantitatively the speedup factor needed for the Branch instructions execution time to

achieve an overall speedup of 1.25 for the program execution time.

1
1.25

0.2 0.1
(1 0.2 0.1)

4

0.1
2

0.05

Branch

Branch

Speedup

s

s

 

   

  

 Page 4 of 11

[21 Points]

(Q2)

(i) Consider the 5-stage pipelined CPU design given below.

a) (4 points) Show the conditions that will be used for generating the

ForwardA signals.

The conditions that will be used for generating the ForwardA signals

If ((Rs != 0) and (Rs == Rd3) and (RegWrite3)) ForwardA  1

Else if ((Rs != 0) and (Rs == Rd4) and (RegWrite4)) ForwardA  2

Else if ((Rs != 0) and (Rs == Rd5) and (RegWrite5)) ForwardA  3

Else ForwardA  0

b) (5 points) Show the control signals that will be used for stalling the

pipeline due to data hazards due to load instruction along with their

conditions. Show the necessary changes that need to be done to the

design.

Condition for Stalling the pipeline due to Load Instruction:

if ((MemRead3 == 1) // Detect Load in EX stage

and (ForwardA==1 or ForwardB==1)) Stall // RAW Hazard

 Page 5 of 11

OR:

 if ((MemRead3 == 1)

 and (Rd3 ≠ 0) and ((Rs == Rd3) or (Rt == Rd3))) Stall

Stall means that the signals PCWrite=0 and IRWrite=0, which will freeze the

content of PC and IR registers and bubble=1 which will introduce a bubble in

stage 2 control register by setting the control signals to 0.

c) (2 points) Show the control signals that will be used for handling

control hazards. Show the necessary changes that need to be done to

the design.

When PCSrc=1, reset=1 and the content of IR register will be reset to 0 to make

the fetched instruction a NOP.

PCSrc=1 same as [(beq and Z) or (bne and Z') or J]

(ii) (2 points) Suppose that the load and store instructions are modified to use

register-indirect addressing, without using an offset. Thus, there is no need

for the ALU to compute the memory address. The load and store instructions

will have the following format, where Rs is the register that contains the

memory address.

LW Rt, (Rs) # No immediate constant used
SW Rt, (Rs) # No immediate constant used

Accordingly, the MIPS pipeline can be modified to have only 4 stages: IF, ID,

EX/MEM, and WB, as shown below. Discuss whether data hazards due to LW

instruction will require stalling the pipeline or not. If not, explain how such

data hazards will be handled.

No pipeline stall is required in this design as the data can be forwarded from the

output of the MUX in EX/MEM stage to the ID stage.

 Page 6 of 11

(iii) (8 Points) Consider the following MIPS assembly language code:

I1: ORI $s0, $0, 10

I2: SLL $s0, $s0, 4

I3: SW $s1, ($s0)

I4: LW $s2, 4($s0)

I5: SUB $s3, $s2, $s0

I6: SW $s2, 4($s3)

Complete the following table showing the timing of the above code on the 5-stage

pipeline given in part (i) (IF, ID, EX, MEM, WB) supporting forwarding and

pipeline stall. Draw an arrow showing forwarding between the stage that provides

the data and the stage that receives the data. Show all stall cycles (draw an X in the

box to represent a stall cycle). Determine the number of clock cycles to execute

this code.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I1: ORI IF ID EX - WB

I2: SLL IF ID EX - WB

I3: SW IF ID EX M -

I4: LW IF ID EX M WB

I5: SUB IF X ID EX - WB

I6: SW IF ID EX M -

Total number of clock cycles to execute the code = 10

 Page 7 of 11

[13 Points]

 (Q3)

(i) (4 Points) Explain how Branch Target Buffer is used to achieve zero delay for

a jump or a taken branch.

The Branch Target Buffer (BTB) is sued in the IF stage. It uses the lower bits

of the PC to index the BTB. Each BTB entry stores Branch/Jump address,

Target Address and prediction bits. If the PC value matches the stored

Branch/Jump address and prediction bits indicate that the branch should be

taken, then the PC is updated using the target address stored in the BTB. This

will result in zero delay for jump instructions and for branch instructions in

case the prediction is correct.

(ii) A sequence of two branches are shown in the first column of the table below

with their respective PC value, branch target address, and next PC. These

branches are executed in four passes (pass 1 to 4). The actual branch

outcomes of each branch in each pass are shown where T represents a branch

taken and NT represents a branch not taken. Assume a Branch Target Buffer

(BTB) is used for early prediction of taken branches.

Two Branches with their respective

PC values, branch target address,

and next PC.

 Branch outcomes in four passes

Actual

Branch

outcome

In pass 1

Actual

Branch

outcome

In pass 2

Actual

Branch

outcome

In pass 3

Actual

Branch

outcome

In pass 4

0xA000 Beq -,-, (target=0xEBC0)

0xA004 ….

..

0xB000 Beq -,-, (target=0x0008)

0xB004 ….

..

 T

T

 T

NT

 T

T

 NT

NT

a) (3 points) Fill in the BTB entries for PC, target and initial prediction (T for

all) for the two branches above. Fill in the prediction in BTB table after each

pass (1 to 4) by assuming a 1-bit prediction. Then, compute the probability of

correct prediction.

BTB BTB Prediction just after pass k (k = 1 to 4)

PC Target Prediction

initial

Prediction

pass 1

Prediction

pass 2

Prediction

pass 3

Prediction

pass 4

0xA000 0xEBC0 T T T T NT

0xB000 0x0008 T T NT T NT

Probability of Correct Prediction = (3+1)/8 = 0.5

 Page 8 of 11

b) (3 points) Repeat the question above by predicting the branch outcome using a

2-bit saturating counter (given below). Denote by NT1 and T1 the weak NT

and weak T, respectively. Assume that the predictor is initialized to T1 (weak

predict taken). Then, compute the probability of correct prediction.

c) (3 points) Assume that a correctly predicted branch incurs zero stalls and a

mis-predicted branch incurs 2 stalls. Assume the CPI = 1.4 when all the

predictions are correct. Determine the CPI for using 2-bit predictors if 18% of

the instructions are branches.

Average number of stalls per instruction = 0.18  (1 – 0.625)  2 = 0.135

CPI = 1.4 + 0.135 = 1.535

BTB BTB Prediction just after pass k (1 to 4)

PC Target Prediction

initial

Prediction

pass 1

Prediction

pass 2

Prediction

pass 3

Prediction

pass 4

0xA000 0xEBC0 T1 T T T T1

0xB000 0x0008 T1 T T1 T T1

Probability of Correct Prediction = (3+2)/8 = 0.625

 Page 9 of 11

[24 Points]

(Q4)

(i) (4 points) Given a 4M  2 memory block as shown below. Use this block to implement a

16M  4 memory block.

22

RAM

Address

Data
__

CS R/W

2

First, we design a block of RAM of size 4M  4 as follows:

CS R/W

Address

Data

Data width = 4 bits

2

CS R/W

Address

Data
2

22 bits

Then, we design a block of RAM of size 16M  4 using the block above as follows:

CS R/W

Address

Data

CS R/W

Address

Data

CS R/W

Address

Data

4 4 4

4

2 to 4

decoder22

24 2

A
d

d
re

ss

CS R/W

Address

Data

4

(ii) (2 points) Consider a 64K byte direct-mapped cache that uses 32-byte blocks and write

through policy. Compute the total number of bits required to store the data, valid, and

tag bits in the cache.

Total Data bits = 64 × 1024 × 8 = 524,288 bits

Total Valid bits = # of blocks = 2048 bits

Total Tag bits = # of blocks × Tag bits = 2048 × (32 – 11 – 5) bits = 32,768 bits

Total bits = Total (Data + Valid + Tag) Bits = 559,104 bits

 Page 10 of 11

(iii) (3 points) If the memory address consists of 32 bits, and a 64K byte 2-way set

associative cache with 32 bytes cache blocks is used. Find the number of tag bits, index

bits, and offset bits.

Block offset bits = 5 bits

Index bits = log
2
[64K/(2  32)] = 10 bits

Tab bits = 32 – 10 – 5 = 17 bits

(iv) (8 points) Given a 2-way set associative cache that uses a 32-bits memory address

divided into 4 bits of offset, 8 bits of index, and 20 bits of tag. Starting with an empty

cache, show the tag, index, and way (block 0 or 1) for each address and indicate whether

a hit or a miss. The replacement policy is LRU.

Address Tag Index Way Hit / Miss

0x001F3A70 0x001F3 0xA7 0 Miss

0x001F3A74 0x001F3 0xA7 0 Hit

0x002F3A78 0x002F3 0xA7 1 Miss

0x002F3C88 0x002F3 0xC8 0 Miss

0x001F3A78 0x001F3 0xA7 0 Hit

0x003F3A70 0x003F3 0xA7 1 Miss

0x002F3C80 0x002F3 0xC8 0 Hit

0x003F3C84 0x003F3 0xC8 1 Miss

(v) A processor runs at 4.0 GHz and has a CPI = 2 for a perfect cache. Assume that load and

store instructions are 15% of the instructions. The processor has an I-cache with a 5%

miss rate and a D-cache with 6% miss rate. The hit time is 2 clock cycles for both caches.

Assume that the time required to transfer a block of data from the main memory to the

cache, i.e. miss penalty, is 30 ns.

a) (2 points) Compute the number of stall cycles per instruction.

Combined misses per instruction = 5% + 15% × 6% = 0.059

Miss Penalty = 30 ns × 4 GHz = 120 cycles

Memory stall cycles per instruction = 0.059 × 120 = 7.08 cycles

b) (1 point) Compute the overall CPI.

Overall CPI = 2.0 + 7.08 = 9.08 cycles

 Page 11 of 11

c) (4 points) Compute the average memory access time (AMAT) in ns.

AMAT(IC) = Hit time(IC) + Miss rate(IC) × Miss penalty

 = (2 cycles / 4 GHz) + 0.05 × 30 ns = 2 ns

AMAT(DC) = Hit time(DC) + Miss rate(DC) × Miss penalty

 = (2 cycles / 4 GHz) + 0.06 × 30 ns = 2.3 ns

AMAT = 1/(1+PLS) × AMAT(IC) + PLS/(1+PLS) × AMAT(DC)

 = 1/(1+0.15) × 2 ns + 0.15/(1+0.15) × 2.3 ns = 2.04 ns

