
 Page 1 of 11

 Jan. 10, 2015

COMPUTER ENGINEERING DEPARTMENT

ICS 233

COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Final Exam

First Semester (141)

Time: 8:00-10:30 AM

Student Name : KEY__

Student ID. : __

Question Max Points Score

Q1 20

Q2 20

Q3 26

Q4 20

Total 86

Dr. Aiman El-Maleh

Dr. Samer Arafat

 Page 2 of 11

 [20 Points]

(Q1)

(i) (10 points)

Suppose that you have a processor that executes a certain program with the following

characteristics: 50% of the execution time is taken by multiply, 20% of the execution time is

taken by divide, and the remaining 30% of the execution time is taken by other instructions.

We want the program to run faster. Suppose that we can improve the multiply to run 2 times

faster and the divide to run 4 times faster. However, due to hardware cost, only one

improvement can be made.

1. Which improvement should be done (multiply or divide?), assuming that the hardware

cost is identical. Justify your answer. (4 points)

2. Given that the program executes on the processor without improvement in 10s, what

will be the execution time of the program with the chosen improvement?

3. Suppose we can now improve both the multiply and divide instructions. What is the

speedup of the improved machine relative to the original machine? (4 points)

We will use Amdahl’s Law as follows:

ExT after improvement = ExT affected by improvement + unaffected ExT

(1)

Suppose the original execution time = 100

Improving the multiply by a factor of 2:

Execution time with improved multiply = 50/2 + 20 + 30 = 75

OR Speedup due to multiply = 1/(0.5/2 + 0.5) = 1/0.75 = 1.33

Improving the divide by a factor of 4:

Execution time with improved divide = 50 + 20/4 + 30 = 85

OR Speedup due to divide = 1/(0.2/4 + 0.8) = 1/0.85 = 1.176

If only one improvement should be made then it is better to improve the multiply.

(2)

Speedup of improving the multiply = 100 / 75 = 1.33

Execution time for a 10s program execution = 10 / 1.33 = 7.5 s

 - another solution using Amdahl’s Law -

 Execution time for a 10s program execution = 5/2 + 2 + 3 = 7.5 s

(3)

Execution time with improved multiply and divide = 50/2 + 20/4 + 30 = 60

Speedup of improving both multiply and divide = 100 / 60 = 1.67

OR Speedup of improving both multiply and divide = 1/(0.5/2 + 0.2/4 + 0.3) = 1/0.6=1.67

 Page 3 of 11

(ii) (3 points)

A certain Intel i7 processor has been tested using SPEC2013, which uses 12 benchmark

software programs. The program names are listed on the X-axis of the following figure,

below, and the corresponding CPI was computed and shown on the Y-axis. The numbers on

top of each bar show the CPI that includes stalls and misprediction (called missspeculation in

the graph). The ideal CPI = 0.25 for all benchmark software programs.

What is the processor CPI, according to SPEC2013?

Processor’s CPI = average of benchmarks’ CPIs with stalls and misspeculation = 1.06

 Page 4 of 11

(iii) (7 points)

Given a certain processor that has the following operation times for processor components:

instruction and data memories: 150 ps, ALU and adders: 140 ps, decode and register file

access (read or write): 100 ps, which of the following would be faster and by how much, a

single-cycle implementation for all instructions, or a multi-cycle implementation optimized

for every class of instructions.

Assume the following instruction mix: 50% ALU, 10% Loads, 10% stores, 15% branches and

15% jumps. Ignore the delays in PC, mux, extender, and wires.

Class IM RR ALU DM RW Total (ps)

ALU 150 100 140 100 490

Load 150 100 140 150 100 640

Store 150 100 140 150 540

Branch 150 100 140 390

Jump 150 100 250

For a single-cycle implementation, the clock cycle is determined by longest delay, which is

load instruction, and that is 640 ps.

For a multi-cycle implementation, the clock cycle is determined by longest delay at any step,

which is the IM or DM steps, and that is 150 pm.

Next, we show the CPI for each instruction class:

Instruction # cycles Instruction # cycles

ALU & Store 4 Branch 3

Load 5 Jump 2

Average CPI = 0.5x4 + 0.1x5 + 0.1x4 + 0.15x3 + 0.15x2 = 3.65

Multiple cycle is faster by a factor = 640/(3.65x150) = 1.17

 Page 5 of 11

 (Q2) [20 Points]

(i) (13 points)

Consider the single-cycle CPU design given below.

You are required to complete the single cycle processor main control unit design.

1. Complete the main control signal values in the table below (6 points).

Op Reg

Dst

Reg

Write

Ext

Op

ALU

Src

ALU

Op

Beq Bne J Mem

Read

Mem

Write

Mem

toReg

R-

type 1=Rd 1 x 0=BusB Rtype 0 0 0 0 0 0

addi
0=Rt 1 1=sign

1=Imm
ADD 0 0 0 0 0 0

slti 0 =Rt
1 1=sign

1=Imm
SLT 0 0 0 0 0 0

andi 0 =Rt
1 0=zer

o

1=Imm
AND 0 0 0 0 0 0

ori 0 =Rt
1 0=zer

o

1=Imm
OR 0 0 0 0 0 0

xori 0 =Rt
1 0=zer

o

1=Imm
XOR 0 0 0 0 0 0

lw 0 =Rt
1 1=sign

1=Imm
ADD 0 0 0 1 0 1

sw
X 0 1=sign

1=Imm
ADD 0 0 0 0 1 x

beq
X 0 x

0=BusB
SUB 1 0 0 0 0 x

bne
X 0 x 0=BusB SUB 0 1 0 0 0 x

j
X 0 x

x
x 0 0 1 0 0 x

 Page 6 of 11

2. Derive the logic design of the control unit for all the control signals given in the table

above, based on the given instructions, except ALUOp. Assume that the opcode of

these instructions is a 6-bit opcode such that the opcode for R-type instructions is 0,

the opcode for addi is 1, the opcode for slti is 2, and so on for the rest of the

instructions. (7 points)

 Page 7 of 11

 (ii) (7 points)

Modify the given single cycle datapath so that it implements the Jump and link instruction,

jal. Draw only the blocks (resources) that must be modified. If the NextPC block needs to be

changed, show its internal design details.

Instruction Meaning Format

 jal label $31=PC+4, jump op6 = 3 imm26

 Page 8 of 11

[26 Points]

(Q3)

(i) Fill the blank in each of the following questions: (7 Points)

1. For a 20-stage pipeline, the maximum speedup that can be achieved over serial execution

is 20.

2. In a pipelined CPU design, structural hazards may occur due to the attempt of the use of

the same hardware resource by two different instructions during the same cycle.

3. In the MIPS 5-stage pipeline, data hazards that may occur are Read After Write (RAW)

hazards.

4. Hazards due to jump and branch instructions are called control hazards.

5. In order to achieve a zero delay for a jump or a taken branch, we need to use Branch

Target Buffer (BTB) in the IF stage.

6. Given the branch outcomes of a branch instruction as shown in the table below, the

accuracy of prediction using a 2-bit predictor, initialized to weakly predict not taken is

4/6=66.67%.

Branch Outcome N T N N N T

Branch Prediction N N N N N N

(ii) Consider the single-cycle CPU design given in Q2, show the necessary

modifications in the data path and control unit to implement this CPU as a 5-

stage Pipeline without considering any type of hazards. Label all the added

parts clearly. (7 Points)

 Page 9 of 11

(iii) Consider the following MIPS assembly language code:

I1: ADDI $a1, $0, 10

I2: LW $t2, 0($t5)

I3: ADD $t3, $t2, $t2

I4: SW $t3, 0($t5)

I5: ADDI $a1, $a1, -1

I6: ADDI $t5, $t5, 4

I7: BNE $a1, $0, I2

a. Complete the following table showing the timing of the above code on a 5-

stage pipeline (IF, ID, EX, MEM, WB) that supports forwarding. Draw an

arrow showing forwarding between the stage that provides the data and the

stage that receives the data. Show all stall cycles (draw an X in the box).

Assume that the branch delay is 1 clock cycle. (9 Points)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I1: ADDI IF ID EX - WB

I2: LW IF ID EX M WB

I3: ADD IF X ID EX - WB

I4: SW IF ID EX M -

I5: ADDI IF ID EX - WB

I6: ADDI IF ID EX - WB

I7: BNE IF ID - - -

I2: LW X IF ID EX M WB

I3: ADD IF X ID EX M WB

b. Assume that branch instructions are implemented using a 1-cycle delayed

branch. Rearrange the given code to reduce the number of stall cycles. Justify

your solution? (3 Points)

We rearrange the solution as follows:

I1: ADDI $a1, $0, 10

I2: LW $t2, 0($t5)

I3: ADDI $a1, $a1, -1

I4: ADD $t3, $t2, $t2

I5: SW $t3, 0($t5)

I6: BNE $a1, $0, I2

I7: ADDI $t5, $t5, 4

 Page 10 of 11

This will eliminate the stall cycle after I2 as now I3 does not depend on I2. In

addition, since we are using a delayed branch of 1 cycle, the instruction after

the branch will always be executed. Thus, we fill this slot with the instruction

ADDI $t5, $t5, 4. Thus, with this code rearrangement there will be no stall

cycles.

 Page 11 of 11

[20 Points]

(Q4)

(i) Fill the blank in each of the following questions: (7 Points)

1. Using a larger block size in cache memory reduces compulsory misses while increases

conflict misses.

2. Increasing cache size reduces capacity misses and conflict misses.

3. Small cache size is used for L1 caches to reduce the hit time.

4. Multi-level caches are used to reduce miss penalty.

5. Valid and Modified bits are required for write back policy.

(ii) Assume that you have a 32-bit address and a cache with 8K byte data size

(not including tag and valid bits).

a. Assuming that the cache is organized as direct-mapped with a 16-byte block

size, determine the number of bits in the offset, index and tag fields. (3 Points)

Offset = log2 (block size) = log2 16 = 4 bits

Index = log2 (# locations) = log2 (8K/16) = log2 512 = 9 bits

Tag= 32- (9+4) = 19 bits

b. Assuming that the cache is organized as four-way set associative with a 16-

byte block size, determine the number of bits in the offset, index and tag

fields. (3 Points)

Offset = log2 (block size) = log2 16 = 4 bits

Index = log2 (# locations) = log2 (8K/16*4) = log2 (128) = 7 bits

Tag= 32- (7+4) = 21 bits

(iii) A processor runs at 2.5 GHz and has a CPI=1.6 for a perfect cache (i.e.

without including the stall cycles due to cache misses). Assume that load and

store instructions are 18% of the instructions. The processor has an I-cache

with a 4% miss rate and a D-cache with 5% miss rate. The hit time is 1 clock

cycle. Assume that the time required to transfer a block of data from the RAM

to the cache, i.e. miss penalty, is 31 ns.

a. What is the number of stall cycles per instruction and the overall CPI? (4

Points)

Miss penalty in clock cycles = 31 * 10-9 * 2.5 * 109 = 77.5 => 78 cycles

Number of stall cycles per instruction = 0.04*78+0.18*0.05*78 = 3.822

Overall CPI = 1.6 + 3.822 = 5.422

b. What is the average memory access time (AMAT) in ns? (3 Points)
No of memory accesses = I + 0.18*I=I*(1+0.18)=1.18*I

Access Time = 1*I + 0.04*I*78 + 0.18*I + 0.18*I*0.05*78=

I*(1+0.18+(0.04+.18*.05)*78)=5.002*I clock cycles

AMAT = Access Time / No of memory accesses = 5.002*I/1.18*I=4.239 clock

cycles = 4.239 * 1/(2.5 * 109)= 1.696 ns

