	Page 11 of 11

[bookmark: _GoBack]COE 301 / ICS 233
Computer Organization

Midterm Exam – Term 172

Saturday, March 24, 2018
10:00 am – 12:00 noon

Computer Engineering Department
College of Computer Sciences & Engineering
King Fahd University of Petroleum & Minerals

Student Name:		 ID:	

	 Dr. Aiman El-Maleh
	 COE 301
	 ICS 233

	 Dr. Marwan Abu-Amara
	 COE 301
	 ICS 233

	 Dr. Muhamed Mudawar
	
	 ICS 233

	Q1
	/ 19
	Q2
	/ 17

	Q3
	/ 07
	Q4
	/ 14

	Q5
	/ 07
	Q6
	/ 16

	Total
	 / 80

Important Reminder on Academic Honesty
Using unauthorized information or notes on an exam, peeking at others work, or altering graded exams to claim more credit are severe violations of academic honesty. Detected cases will receive a failing grade in the course.

Q1. [19 points] Fill-in the Blanks
a) (1 point) In addition to being space and time efficient, programming in assembly language has the advantage of ___.
b) (1 point) In addition to faster program development and maintenance, programming in high-level language has the advantage _______________________________________.
c) (1 point) The instruction set architecture of a processor provides an interface between _______________________________________.
d) (1 point) Assuming Array is defined as shown below:
Array: .word 10, 11, 12, 13, 14
The content of register $t1 (in hexadecimal) after executing the following sequence of instructions is ________________________.
la $t0, Array
lw $t1, 4($t0)
e) (2 points) Write a minimum sequence of MIPS basic instructions to implement the pseudo instruction: bgt $s1,$s2,Next

f) (2 points) Write a minimum sequence of MIPS basic instructions to implement the pseudo instruction: andi $t0,$t0,0x12345678

g) (1 point) Assuming that $a0 contains an Alphabetic character (uppercase or lowercase), write a MIPS instruction that will make the character stored in $a0 always lower case. Note that the ASCII code of character 'A' is 0x41 while that of character 'a' is 0x61.

h) (3 points) The following is a partial MIPS assembly language code:
	Address
	Label
	Instruction

	0x00400000
	
	bgtz
	$a1, loop

	
	
	
	. . .

	0x00403000
	loop:
	addu
	$a0, $a1, $v0

	
	
	
	. . .

	0x00410000
	
	bne
	$a0, $zero, loop

Calculate the 16-bit immediate value (in hexadecimal) for loop in the bgtz instruction.
Calculate the 16-bit immediate value (in hexadecimal) for loop in the bne instruction.

i) (2 points) Given that Array2 is defined as shown below:
Array2: .byte -1, 2, -3, -4, -5, 6
After executing the following sequence of instructions, the content of the two registers (in hexadecimal) is $t1=_________________ and $t2=____________________.
la $t0, Array2
lb $t1, 2($t0)
lhu $t2, 2($t0)
j) (2 points) Given the following data definitions, and assuming that the first variable X starts at address 0x10010000, then the addresses for variables Y and Z will be ________________ and __________________.
.data	
X: .byte 10, 11, 12
Y: .half 13, 14, 15	
Z: .word 16, 17, 18
k) (3 points) Write a minimum sequence of MIPS basic instructions to multiply the signed integer value of register $t0 by 15.25 without using multiplication instructions. Put the final integer result in $t0. For example, if the initial value of $t0 is 5 then the final value will be 76. The additional fraction is truncated.

l)

Q2. Floating-Point [17 points]
a) (3 points) Find the decimal value of the following single-precision float:
	S
	Exponent
	Fraction

	1
	1000 1000
	111 1100 1101 0000 0000 0000

b) (4 points) Find the normalized IEEE 754 single-precision representation of +59.625.

c) (2 points) Show the IEEE 754 representation of +Zero and -Infinity for single precision:

d) (2 points) Find the approximate decimal value of the largest positive denormalized float for single precision.

e) (6 points) Given that A and B are single-precision floats, compute the difference A–B. Use rounding to nearest even. Perform the operation using guard, round and sticky bits.
A = +1.111 0000 0000 1111 1100 0001 × 2-4
B = +1.000 1111 1111 0000 0000 1111 × 2+3

Q3. [7 points] Translate Nested IF statements
Using minimal number of instructions, translate the following nested IF statements into MIPS assembly code. Assume that variables a, b, c, and d are signed integers stored in registers $s0, $s1, $s2, and $s3, respectively. If needed, you can use pseudo-branch instructions only.
if (((a > b) || (c <= d)) && (a == c)) {
 if (c != d) a = b + c;
 else c = b – 2;
}

Q4. [14 points] Translate a Recursive Function
Translate the following high-level recursive function freq into MIPS assembly code. The freq function counts the number of times an integer i appears in an array A of n integers. The array A is already in memory. The function parameters are passed in registers $a0, $a1 and $a2, respectively. The freq function returns the result in register $v0. Use MIPS convention in saving and restoring only the necessary register(s) in the recursive function. Your MIPS implementation of the freq function must be recursive. Add comments to explain the utilization of registers.
int freq(int A[], int n, int i) {
	if (n == 0) return 0;
	int j = 0;
	if (A[n-1] == i) j = 1;
	return (j + freq(&A[0], n-1, i));
}

Q5. [7 points] Compute the Sum of Decimal Digits
Write a MIPS function sum_digits that computes and returns the sum of decimal digits in an unsigned integer. For example, the sum of decimal digits for 1536 is 1+5+3+6 = 15. The function sum_digits receives the unsigned integer argument in binary in register $a0. For example, 1536 = (0000 … 0110 0000 0000)binary. It should extract the decimal digits, compute, and return their sum, also in binary, in register $v0. Hint: divide the unsigned integer by 10 to extract the decimal digits.

Q6. [16 points] Write Loops to Traverse a Matrix

Given that M is a square matrix of N×N integers (N rows by N columns), which is already read and initialized in memory. The starting address of matrix M is stored in register $a0, and N is stored in register $a1. This is always the case for parts (a) and (b).

a)	(7 points) Write MIPS code to compute the sum of all N elements of row i, where i < N. The value of i is stored in register $a2. The sum should be computed in $v0. Add comments to explain the utilization of registers. Do NOT use pseudo-instructions.

b)	(9 points) Write MIPS code to locate the maximum element in column j, where j < N. The value of index j is stored in $a2. The maximum unsigned value of column j should be computed in $v0 and its corresponding row index should be computed in $v1. Add comments to explain the utilization of registers. You may use pseudo-branch instructions.

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
	
image4.png
Instructi Meaning |-Type Format

addi__$s1, $52, 10 $52 + 10 rs = $52 ri=$s1 imm?® = 10
addiu_$s1, $52, 10 $s2+ 10 15 =$52| ri=9s1 imm? = 10
andi_$s1, $52, 10 | $51 =952 & 10 15 =$52| ri=9s1 imm® = 10
ori_ $s1, 852,10 $521 10 15 =$52| ri=59s1 imm® = 10
xori__$s1, $52, 10 $52"10 15 = $52| ri=9s1 imm® = 10
i $s1,10 $s1=10<<16 0 [rt=8s1 imm™ =10

image5.png
Meaning Format

j label jump to label 2 imm28

beq rs, i, label |branchif (rs ==rt) [opf=4 | rs® | rt5 imm?1®
bne rs, i, label |branchif (rs!=rt) |opf=5| rs® | rt5 imm?1®
blez rs,label |branchif (rs<=0) |op®=6| rs® | 0 imm?®
bgtz rs,label |branchif(rs>0) |opf=7| rs® | 0O imm?10
bltz rs,label |branchif(rs<0) |opf=1|rs® | O imm?1e
bgez rs, label |branchif (rs>=0) |opf=1| rs® | 1 imm?®

image6.png
Instruction Meaning Format

sit rd,rs, it rd=(rs<rt?1:0) rso | 5 [rd® | 0 | Ox2a
sltu rd, rs, it rd=(rs<rt?1:0) rso | 5 [rd® | 0 | Ox2b
sl rt, rs, imm| rt=(rs<imm?1:0) rsd | o imm?1°
sltiu_rt, rs, imm?| rt=(rs<imm?1:0) rsd | o imm?1°

image7.png
Instruction Meaning |-Type Format
I rt, imm'®(rs) | rt = MEM[rs+imm'] | 0x20 | rs® i imm®

th rt, imm'®(rs) | rt = MEM[rs+imm?] | 0x21 | rs® i imm?®

Iw_rt, imm®(rs) | rt = MEM[rs+imm'6] | 0x23 | rs® i imm1®

1t = MEM[rs+imm®] | 0x24 | rs5 | 16 imms

sb _rt, immS(rs) | MEM[rs+imm™] =rt | 0x28 | rs® i imm?®

sh rt, imm'S(rs) | MEM[rs+imm™] =rt | 0x29 | rs® i imm?®

(rs)
(rs)
(rs)
(rs)
Ihu_t, imm&(rs) [rt = MEM(rs+immé] | 0x25 | rs5 | rtf imme
(rs)
(rs)
(rs)

sw_rt, imm?S(rs) | MEM[rs+imm®] =rt | Ox2b | rs® i imm?®

image8.png
Instruction Format

jal__label $31=PC+4, jump [opf=3 imm28

ir Rs PC=Rs op®=0] rsd 0 [} 8
jalr _Rd, Rs [Rd=PC+4, PC=Rs | 0p®=0 | rs® rd®| 0 9

image9.png
Instruction Meaning Format

mult Rs, Rt Hi,Lo=Rs xRt Rt® 0 0 0x18
multu Rs, Rt Hi,Lo=Rs xRt Rt> 0 0 0x19
mul Rd,Rs, Rt |Rd=Rs xRt Rt" |Rd® | 0 0x02
div._Rs Rt Hi,Lo=Rs /Rt Rt | 0 0 Ox1a
divu Rs, Rt Hi,Lo=Rs /Rt Rt> 0 0 0x1b
mfhi Rd Rd =Hi 0 |Rd®| 0O 0x10
mflo Rd Rd =Lo 0 |[Rd®| 0O 0x12

image1.png
Instruction Meaning R-Type Format

and $s1, $52, $53 |$s1 = $52 & $s3 s =$s2|rt=$s3|rd = $s1[sa = 0|f = 0x24
or_ $s1, $s2, $53[$s1 = $52 | $53 s = $s2| $s1 =

xor_$s1, $52, $53 [$s1 = $52 * $s3 s = $s2| $s1

nor_$s1, $52, $53 | $s1 = ~($52/$53) s = $52) $s1

image2.png
Instruction Meaning R-Type Format

add §s1, $s2, $53| $51 = 52 + §53 rs = $52rt= $s3)rd = §s1[sa = 0
addu §s1, $s2, $s3| $s1 15 = $52rt=$s3|rd = $s1[sa = 0
sub_§s1, $s2, $s3| $s1 15 = 521t =853 sa=0
subu §s1, $s2, $53] $s1 = $52 — §53 rs = $52[rt= 853 sa=0

image3.png
sli

$s1,852,10

$s1

R-Type Format

srl

$s1,852,10

sta

$s1, $s2, 10

sliv

951,852,853

sriv.

951,852,853

srav

951,852,853

$s1=9s2 >> $s3

SR [E[E=

8|8[8(8|8(8

RN ENPRIN Y

