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Q1. [17 points] General Understanding of Topics 

a) (1 point) Does pipelining improve the latency of individual instructions? Explain. 
 

  

Pipelining does NOT improve the latency of individual instructions. However, it 

improves the throughput. 

 

 

b) (2 points) What causes control hazards in a pipelined datapath and how control hazards 

can be eliminated? 

 

 Control hazards are caused by jump and branch instructions that are delayed in a 

pipelined datapath. They can be eliminated by converting the next (one or two) 

instructions that appear after a jump or a taken branch into NOPs. 

 

 

c) (2 points) Explain the difference between static RAM and dynamic RAM. 

 

 

Static RAM: Cell is made out of 6 transistors and does not require refreshing. 

 

Dynamic RAM: Cell is made out of 1 transistor and 1 capacitor, requires refreshing, 

but denser (cheaper) than SRAM. 

 

 

d) (2 points) Is it possible to use only one memory for both instructions and data in the 

single-cycle datapath? Explain why or why not. Is it possible to use only one memory for 

both instructions and data in a multi-cycle datapath? Explain. 

 

 

In a single-cycle datapath, a load instruction must be fetched and must read data 

during the same cycle. Using only one memory is NOT possible to fetch the 

instruction and load the data during the same cycle. 

 

 In a multi-cycle datapath, using only one memory IS possible because fetching the 

instruction and loading the data can occur in two different cycles. 

 

  

e) (2 points) Why do we need cache memory, and why do we have two separate cache 

memories (I-cache and D-cache) in a pipelined processor? 
 

 

We need cache memory to reduce memory latency. 

 

Two separate caches (I-cache and D-cache) are needed to access both of them 

during the same cycle by two different instructions. 
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f) (2 points) Explain the concepts of temporal locality and spatial locality of reference in 

cache memory. 

 

 

 Temporal Locality: if a program references an instruction (or data) at a given 

address then it might reference the same address again in the future. 

 

 Spatial Locality: if a program references an instruction (or data) at a given address 

then it might reference the next address in the memory. 

 

 

 

g) (2 points) What needs to be stored inside a cache for block identification? How does a 

cache know whether there is a cache hit or miss? 

 

  

A cache stores tags for block identification. 

 

 The tag stored in the cache is compared against the tag in the memory address to 

determine whether there is a cache hit or miss. 

 

 

h) (2 points) Suppose a 4-way set-associative cache has a capacity of 32 KiB (1 KiB = 1024 

bytes) and each block consists of 64 Bytes. What is the total number of blocks in the 

cache? What is the number of sets? 

 

  

 Total number of blocks = 32 x 1024 / 64 = 512 blocks 

 

 Number of sets = 512 / 4 = 128 sets 

 

 

 

 

i) (2 points) Explain the difference between a write-through and a write-back cache.  

 

 

 Write-through cache: every write to the cache is written to the lower-level memory. 

 

 Write-back cache: the write is done in the cache only. A modified bit is needed to 

indicate whether a block has been modified. Modified blocks are written back to 

memory when replaced. 

  



 Page 4 of 13 

 

 

Q2. [8 points] Single-Cycle Processor 
 

The single-cycle datapath and control of a MIPS-like processor is shown below. However, this 

datapath and control lacks the implementation of many important instructions. 

 

 
 

Consider adding the following two new instructions to the above datapath: JLR and LWI. The 

JLR instruction is I-type and has a unique opcode. The LWI instruction is R-type and has a 

unique function code. The least-significant 2 bits of register PC are hardwired to 00, and not 

stored in PC. Therefore, it is sufficient to increment PC by 1 to point to the next instruction in 

memory. 

 

Instruction Format Meaning 

Jump and Link Register 

Op = JLR 
Op, Rs, Rt, Imm16 

Reg[Rt] = PC + 1 

PC = Reg[Rs] + Imm16 

Load Word Indexed 

Op = R-type, Func = LWI 
Op, Rs, Rt, Rd, Func Reg[Rd] = Mem[Reg[Rs] + Reg[Rt]] 

 

a) (4 points) Redraw the necessary changes to the above datapath to implement the above 

two instructions. Draw only the modified parts and explain why they are needed. 

b) (4 points) Identify any new control signal needed to implement the above two 

instructions. Draw a table showing the values of all control signals to implement the 

above two instructions. 
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Q2 Solution 

a) Changes needed to implement JLR and LWI instructions: 

Add a 4th input to the mux at the input of the PC register and add a bus connecting the 

ALU result (Jump Register Address) back to the PC. 

Add a 3rd input to the WB mux and add a bus connecting the Return Address (PC + 1) 

back to the register file. 

 

 

b) Same control signals are used, except that Main control logic now depends on the 

opcode and function code for LWI. 

 

 PCSrc RegDst RegWr ExtOp ALUSrc ALUOp MemRd MemWr WBdata 

JLR 3=JRA 0=Rt 1 1=Sign 1=Imm ADD 0 0 2=RA 

LWI 0=PC+1 1=Rd 1 X 0=BusB ADD 1 0 1=Mem 
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Q3. [14 points] Performance of Single-Cycle, Multi-Cycle, and Pipelined CPU 

Compare the performance of a single-cycle processor and a multi-cycle processor. The delay 

times are as follows: 

Instruction memory access time = 500 ps Data memory access time = 500 ps 

Instruction Decode and Register read = 200 ps Register write = 200 ps 

ALU delay = 100 ps 

Ignore the other delays in the multiplexers, wires, etc. Assume a program has the following 

instruction mix: 40% ALU, 5% load, 5% store, 30% branch, and 20% jump. 

a) (6 points) Compute the delay for each instruction class and the clock cycle for the single-

cycle processor. 
 

 

Instruction 

Class 

Instruction 

Memory 

Decode and 

Register Read 
ALU 

Data 

Memory 

Write 

Back 

Total 

Delay 

ALU 500 200 100  200 1000 

Load 500 200 100 500 200 1500 

Store 500 200 100 500  1300 

Branch 500 200 100   800 

Jump 500 200    700 

 

 

Clock cycle for the single-cycle processor = 1500 ps = 1.5 ns 

 

 

b) (2 points) Compute the clock cycle and the average CPI for the multi-cycle processor. 

 

Clock cycle for the multi-cycle processor = max(500,200,100) = 500 ps 

 

 

Average CPI for the multi-cycle processor =  

 

0.4  4 + 0.05  5 + 0.05  4 + 0.3  3 + 0.2  2 = 3.35 
 

 

c) (2 points) Determine quantitatively if there is a speedup when using the multi-cycle 

processor with respect to the single-cycle. 

 

Speedup = (1500  1) / (500  3.35) = 0.8955    No speedup 
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d) (2 points) Assume that the processor is pipelined. Furthermore, assume that a program has 

the following instruction mix: 40% ALU, 5% load, 5% store, 30% branch, and 20% jump. 

Moreover, assume that 90% of the branches will be taken. The CPU stalls 1 cycle for each 

jump and 2 cycles for each taken branch. Compute the average CPI for the pipelined 

processor due to control hazards only. 

 

 

Average CPI for the pipelined processor for control hazards = 

 

CPIbase + CPIstalls = 1 + (0.3  0.9  2) + (0.2  1) = 1.74 

 

 

 

 

 

 

 

e) (2 points) Assume that the processor is pipelined and that load instructions are 5% of the 

instruction count and store instructions are also 5% as given above. However, the program 

spends 30% of its execution time executing load instructions and 15% of its execution time 

executing store instructions. The designers discovered that the Data cache is producing many 

cache misses causing the CPU to stall. They decided to improve the design of the data cache 

and improve the execution time of the load instructions by a factor of 3x (3 times faster) and 

the store instructions by a factor of 2x. Determine the overall speedup of the program due to 

the improvements done to the data cache. 

 

Speedup due to data cache improvement =  

 

𝟏

𝟎. 𝟑
𝟑 +

𝟎. 𝟏𝟓
𝟐 + (𝟏 − 𝟎. 𝟑 − 𝟎. 𝟏𝟓)

= 𝟏. 𝟑𝟕𝟗 

 

The program will run faster by a factor of 1.379x due to data cache improvement. 
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Q4. [19 points] Pipelined CPU Design 
 

I. Consider the 5-stage pipelined CPU design given below.  
 

 
 

a) (5 points) Show the design changes needed for handling data hazards using forwarding 

including a block diagram for data hazard detection and forwarding unit.  
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b) (4 points) Show the control signals that will be used for stalling the pipeline for data 

hazards due to load instructions along with their conditions. Show the necessary changes 

that need to be done to the design. 

 

Condition for Stalling the pipeline due to Load Instruction: 
 

if ((EX.MemRd == 1)   // Detect Load in EX stage 
and (ForwardA==1 or ForwardB==1))  Stall  // RAW Hazard 
 

OR: 

if ((EX.MemRd == 1) 
and (Rd2 != 0) and ((Rs == Rd2) or (Rt == Rd2))) Stall 
 
 

Stall will Disable PC and Disable IR (i.e. the signals PCWrite=0 and IRWrite=0), which 

will freeze the content of PC and IR registers and will introduce a bubble in stage 2 

control register by setting the control signals to 0. 
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c) (2 points) Show the control signals that will be used for handling control hazards. Show 

the necessary changes that need to be done to the design. 

 

 

When a jump instruction is at stage 2, Kill1=1 will replace that instruction by a 

NOP and when a taken branch is at stage 3, Kill1=1 and Kill2=1 will replace both 

instructions by NOPs. 

 

 
 

 

d) (3 points) Show the design of the PC control logic that includes the handling of control 

hazards assuming that only BEQ, BNE, and J instructions are implemented. 
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II. (5 Points) Consider the following MIPS assembly language code:  

I1: ORI  $s0, $0, 5   

I2: ADDI $s1, $0, 10  

I3: ADD  $s1, $s0, $s1  

I4: LW   $s0, -4($s1)  

I5: ADD  $s0, $s0, $s0 

I6: SW   $s0, -4($s1)  
  

Complete the following table showing the timing of the above code on the 5-stage 

pipeline given in part (i) (IF, ID, EX, MEM, WB) supporting forwarding and pipeline 

stall. Draw an arrow showing forwarding between the stage that provides the data and 

the stage that receives the data. Show all stall cycles (draw an X in the box to represent 

a stall cycle). Determine the number of clock cycles to execute this code.  
 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I1: ORI IF ID EX 
- 

WB           

I2: ADDI  IF ID EX - WB          

I3: ADD   IF ID EX - WB         

I4: LW    IF ID EX M WB        

I5: ADD     IF X ID EX - WB      

I6: SW       IF ID EX M -     

 

 

Total number of clock cycles to execute the above code = 10 
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Q5. [10 points] Cache Memory 
 

a) (3 points) Given that the memory address consists of 64 bits, consider a 64 KiB fully 

associative cache (1 KiB = 1024 bytes) with 64-byte cache blocks and a write back policy 

is used. Compute the total number of bits required to store the valid, modified, and tag 

bits in the cache. 

 

Total Valid bits = # of blocks = 1024 bits 

Total Modified bits = # of blocks = 1024 bits 

Total Tag bits = # of blocks × Tag bits = 1024 × (64 – 6) bits = 59,392 bits 

 

 

b) (3 points) Assume that the memory address consists of 64 bits, and a 64 KiB 4-way set 

associative cache with 64-byte cache blocks is used. Find the number of tag bits, index 

bits, and offset bits needed. 

 

Offset bits = 6 bits 

Index bits = log2[64K/(4  64)] = 8 bits 

Tag bits = 64 – 6 – 8 = 50 bits 

 

c) (4 points) Given a 2-way set-associative cache that uses 32-bit memory addresses divided 

into 4 bits of offset, 12 bits of index, and 16 bits of tag. Starting with an empty cache, show 

the tag, index, and way (block 0 or 1) for each of the following sequentially referenced 

addresses and indicate whether the reference resulted in a hit or a miss. The replacement 

policy used is FIFO. 

 

Address Tag Index Way Hit / Miss 

0x00553F0F 0x0055 0x3F0 0 Miss 

0x00773F01 0x0077 0x3F0 1 Miss 

0x00553F02 0x0055 0x3F0 0 Hit 

0x005530AC 0x0055 0x30A 0 Miss 

0x00773F07 0x0077 0x3F0 1 Hit 

0x005530AA 0x0055 0x30A 0 Hit 

0x009930AB 0x0099 0x30A 1 Miss 

0x00993F05 0x0099 0x3F0 0 Miss 
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Q6. [12 points] Cache Performance 
 

A processor runs at 2.5 GHz and has a CPI=1.7 for a perfect cache (i.e. without including the 

stall cycles due to cache misses). Assume that load and store instructions are 15% of the 

instructions. The processor has an I-cache with a 4% miss rate and a D-cache with 6% miss 

rate. The hit time is 1 clock cycle for both caches. Assume that the time required to transfer a 

block of data from the main memory to the cache, i.e. miss penalty, is 40 ns. 

 

a)  (4 Points) Compute the number of stall cycles per instruction and the overall CPI. 

 

 

Combined misses per instruction = 4% + 15% × 6% = 0.049 

Miss Penalty = 40 ns × 2.5 GHz = 100 cycles 

Memory stall cycles per instruction = 0.049 × 100 = 4.9 cycles 

Overall CPI = 1.7 + 4.9 = 6.6 cycles 

 

b) (4 Points) Compute the average memory access time (AMAT) in ns. 
 

AMAT(I-Cache) = Hit time + Miss rate(I-Cache) × Miss penalty 

  = (1 cycle / 2.5 GHz) + 0.04 × 40 ns = 2 ns 

 

AMAT(D-Cache) = Hit time + Miss rate(D-Cache) × Miss penalty 

  = (1 cycle / 2.5 GHz) + 0.06 × 40 ns = 2.8 ns 

 

AMAT = 1/(1+ %LS) × AMAT(I-Cache)  + %LS/(1+%LS) × AMAT(D-Cache) 

  = 1/(1+0.15) × 2 ns + 0.15/(1+0.15) × 2.8 ns = 2.104 ns 
 

Alternative Solution: 

 

Combined Miss Rate = Combined Misses per Instruction / (1 + %LS) 

Combined Miss Rate = 0.049 / (1 + 0.15) = 0.0426 

 

AMAT = 0.4 ns + 0.0426 × 40 ns = 2.104 ns 

 

c) (4 Points) Discuss how the average memory access time (AMAT) can be reduced by 

mentioning all the factors that could reduce it and for each factor explaining how it can be 

done. 

 

The average memory access time can be reduced by: 

 

1. Reducing the Hit time by using Small and simple caches 

2. Reducing the Miss Rate by using Larger cache size, higher associativity, and 

larger block size 

3. Reducing the Miss Penalty by using Multilevel caches 

 


