

COE 301 / ICS 233

Computer Organization

Final Exam – Term 172

Tuesday, May 15, 2018

8:00 am – 10:30 am

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

SOLUTION

 Dr. Aiman El-Maleh COE 301 ICS 233
 Dr. Marwan Abu-Amara COE 301 ICS 233
 Dr. Muhamed Mudawar

Q1 / 17 Q2 / 8

Q3 / 14 Q4 / 19

Q5 / 10 Q6 / 12

Total / 80

Important Reminder on Academic Honesty

Using unauthorized information or notes on an exam, peeking at others work, or

altering graded exams to claim more credit are severe violations of academic

honesty. Detected cases will receive a failing grade in the course.

 Page 2 of 13

Q1. [17 points] General Understanding of Topics

a) (1 point) Does pipelining improve the latency of individual instructions? Explain.

Pipelining does NOT improve the latency of individual instructions. However, it

improves the throughput.

b) (2 points) What causes control hazards in a pipelined datapath and how control hazards

can be eliminated?

 Control hazards are caused by jump and branch instructions that are delayed in a

pipelined datapath. They can be eliminated by converting the next (one or two)

instructions that appear after a jump or a taken branch into NOPs.

c) (2 points) Explain the difference between static RAM and dynamic RAM.

Static RAM: Cell is made out of 6 transistors and does not require refreshing.

Dynamic RAM: Cell is made out of 1 transistor and 1 capacitor, requires refreshing,

but denser (cheaper) than SRAM.

d) (2 points) Is it possible to use only one memory for both instructions and data in the

single-cycle datapath? Explain why or why not. Is it possible to use only one memory for

both instructions and data in a multi-cycle datapath? Explain.

In a single-cycle datapath, a load instruction must be fetched and must read data

during the same cycle. Using only one memory is NOT possible to fetch the

instruction and load the data during the same cycle.

 In a multi-cycle datapath, using only one memory IS possible because fetching the

instruction and loading the data can occur in two different cycles.

e) (2 points) Why do we need cache memory, and why do we have two separate cache

memories (I-cache and D-cache) in a pipelined processor?

We need cache memory to reduce memory latency.

Two separate caches (I-cache and D-cache) are needed to access both of them

during the same cycle by two different instructions.

 Page 3 of 13

f) (2 points) Explain the concepts of temporal locality and spatial locality of reference in

cache memory.

 Temporal Locality: if a program references an instruction (or data) at a given

address then it might reference the same address again in the future.

 Spatial Locality: if a program references an instruction (or data) at a given address

then it might reference the next address in the memory.

g) (2 points) What needs to be stored inside a cache for block identification? How does a

cache know whether there is a cache hit or miss?

A cache stores tags for block identification.

 The tag stored in the cache is compared against the tag in the memory address to

determine whether there is a cache hit or miss.

h) (2 points) Suppose a 4-way set-associative cache has a capacity of 32 KiB (1 KiB = 1024

bytes) and each block consists of 64 Bytes. What is the total number of blocks in the

cache? What is the number of sets?

 Total number of blocks = 32 x 1024 / 64 = 512 blocks

 Number of sets = 512 / 4 = 128 sets

i) (2 points) Explain the difference between a write-through and a write-back cache.

 Write-through cache: every write to the cache is written to the lower-level memory.

 Write-back cache: the write is done in the cache only. A modified bit is needed to

indicate whether a block has been modified. Modified blocks are written back to

memory when replaced.

 Page 4 of 13

Q2. [8 points] Single-Cycle Processor

The single-cycle datapath and control of a MIPS-like processor is shown below. However, this

datapath and control lacks the implementation of many important instructions.

Consider adding the following two new instructions to the above datapath: JLR and LWI. The

JLR instruction is I-type and has a unique opcode. The LWI instruction is R-type and has a

unique function code. The least-significant 2 bits of register PC are hardwired to 00, and not

stored in PC. Therefore, it is sufficient to increment PC by 1 to point to the next instruction in

memory.

Instruction Format Meaning

Jump and Link Register

Op = JLR
Op, Rs, Rt, Imm16

Reg[Rt] = PC + 1

PC = Reg[Rs] + Imm16

Load Word Indexed

Op = R-type, Func = LWI
Op, Rs, Rt, Rd, Func Reg[Rd] = Mem[Reg[Rs] + Reg[Rt]]

a) (4 points) Redraw the necessary changes to the above datapath to implement the above

two instructions. Draw only the modified parts and explain why they are needed.

b) (4 points) Identify any new control signal needed to implement the above two

instructions. Draw a table showing the values of all control signals to implement the

above two instructions.

 Page 5 of 13

Q2 Solution

a) Changes needed to implement JLR and LWI instructions:

Add a 4th input to the mux at the input of the PC register and add a bus connecting the

ALU result (Jump Register Address) back to the PC.

Add a 3rd input to the WB mux and add a bus connecting the Return Address (PC + 1)

back to the register file.

b) Same control signals are used, except that Main control logic now depends on the

opcode and function code for LWI.

 PCSrc RegDst RegWr ExtOp ALUSrc ALUOp MemRd MemWr WBdata

JLR 3=JRA 0=Rt 1 1=Sign 1=Imm ADD 0 0 2=RA

LWI 0=PC+1 1=Rd 1 X 0=BusB ADD 1 0 1=Mem

 Page 6 of 13

Q3. [14 points] Performance of Single-Cycle, Multi-Cycle, and Pipelined CPU

Compare the performance of a single-cycle processor and a multi-cycle processor. The delay

times are as follows:

Instruction memory access time = 500 ps Data memory access time = 500 ps

Instruction Decode and Register read = 200 ps Register write = 200 ps

ALU delay = 100 ps

Ignore the other delays in the multiplexers, wires, etc. Assume a program has the following

instruction mix: 40% ALU, 5% load, 5% store, 30% branch, and 20% jump.

a) (6 points) Compute the delay for each instruction class and the clock cycle for the single-

cycle processor.

Instruction

Class

Instruction

Memory

Decode and

Register Read
ALU

Data

Memory

Write

Back

Total

Delay

ALU 500 200 100 200 1000

Load 500 200 100 500 200 1500

Store 500 200 100 500 1300

Branch 500 200 100 800

Jump 500 200 700

Clock cycle for the single-cycle processor = 1500 ps = 1.5 ns

b) (2 points) Compute the clock cycle and the average CPI for the multi-cycle processor.

Clock cycle for the multi-cycle processor = max(500,200,100) = 500 ps

Average CPI for the multi-cycle processor =

0.4 4 + 0.05 5 + 0.05 4 + 0.3 3 + 0.2 2 = 3.35

c) (2 points) Determine quantitatively if there is a speedup when using the multi-cycle

processor with respect to the single-cycle.

Speedup = (1500 1) / (500 3.35) = 0.8955 No speedup

 Page 7 of 13

d) (2 points) Assume that the processor is pipelined. Furthermore, assume that a program has

the following instruction mix: 40% ALU, 5% load, 5% store, 30% branch, and 20% jump.

Moreover, assume that 90% of the branches will be taken. The CPU stalls 1 cycle for each

jump and 2 cycles for each taken branch. Compute the average CPI for the pipelined

processor due to control hazards only.

Average CPI for the pipelined processor for control hazards =

CPIbase + CPIstalls = 1 + (0.3 0.9 2) + (0.2 1) = 1.74

e) (2 points) Assume that the processor is pipelined and that load instructions are 5% of the

instruction count and store instructions are also 5% as given above. However, the program

spends 30% of its execution time executing load instructions and 15% of its execution time

executing store instructions. The designers discovered that the Data cache is producing many

cache misses causing the CPU to stall. They decided to improve the design of the data cache

and improve the execution time of the load instructions by a factor of 3x (3 times faster) and

the store instructions by a factor of 2x. Determine the overall speedup of the program due to

the improvements done to the data cache.

Speedup due to data cache improvement =

𝟏

𝟎. 𝟑
𝟑 +

𝟎. 𝟏𝟓
𝟐 + (𝟏 − 𝟎. 𝟑 − 𝟎. 𝟏𝟓)

= 𝟏. 𝟑𝟕𝟗

The program will run faster by a factor of 1.379x due to data cache improvement.

 Page 8 of 13

Q4. [19 points] Pipelined CPU Design

I. Consider the 5-stage pipelined CPU design given below.

a) (5 points) Show the design changes needed for handling data hazards using forwarding

including a block diagram for data hazard detection and forwarding unit.

 Page 9 of 13

b) (4 points) Show the control signals that will be used for stalling the pipeline for data

hazards due to load instructions along with their conditions. Show the necessary changes

that need to be done to the design.

Condition for Stalling the pipeline due to Load Instruction:

if ((EX.MemRd == 1) // Detect Load in EX stage
and (ForwardA==1 or ForwardB==1)) Stall // RAW Hazard

OR:

if ((EX.MemRd == 1)
and (Rd2 != 0) and ((Rs == Rd2) or (Rt == Rd2))) Stall

Stall will Disable PC and Disable IR (i.e. the signals PCWrite=0 and IRWrite=0), which

will freeze the content of PC and IR registers and will introduce a bubble in stage 2

control register by setting the control signals to 0.

 Page 10 of 13

c) (2 points) Show the control signals that will be used for handling control hazards. Show

the necessary changes that need to be done to the design.

When a jump instruction is at stage 2, Kill1=1 will replace that instruction by a

NOP and when a taken branch is at stage 3, Kill1=1 and Kill2=1 will replace both

instructions by NOPs.

d) (3 points) Show the design of the PC control logic that includes the handling of control

hazards assuming that only BEQ, BNE, and J instructions are implemented.

 Page 11 of 13

II. (5 Points) Consider the following MIPS assembly language code:

I1: ORI $s0, $0, 5

I2: ADDI $s1, $0, 10

I3: ADD $s1, $s0, $s1

I4: LW $s0, -4($s1)

I5: ADD $s0, $s0, $s0

I6: SW $s0, -4($s1)

Complete the following table showing the timing of the above code on the 5-stage

pipeline given in part (i) (IF, ID, EX, MEM, WB) supporting forwarding and pipeline

stall. Draw an arrow showing forwarding between the stage that provides the data and

the stage that receives the data. Show all stall cycles (draw an X in the box to represent

a stall cycle). Determine the number of clock cycles to execute this code.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I1: ORI IF ID EX
-

WB

I2: ADDI IF ID EX - WB

I3: ADD IF ID EX - WB

I4: LW IF ID EX M WB

I5: ADD IF X ID EX - WB

I6: SW IF ID EX M -

Total number of clock cycles to execute the above code = 10

 Page 12 of 13

Q5. [10 points] Cache Memory

a) (3 points) Given that the memory address consists of 64 bits, consider a 64 KiB fully

associative cache (1 KiB = 1024 bytes) with 64-byte cache blocks and a write back policy

is used. Compute the total number of bits required to store the valid, modified, and tag

bits in the cache.

Total Valid bits = # of blocks = 1024 bits

Total Modified bits = # of blocks = 1024 bits

Total Tag bits = # of blocks × Tag bits = 1024 × (64 – 6) bits = 59,392 bits

b) (3 points) Assume that the memory address consists of 64 bits, and a 64 KiB 4-way set

associative cache with 64-byte cache blocks is used. Find the number of tag bits, index

bits, and offset bits needed.

Offset bits = 6 bits

Index bits = log2[64K/(4 64)] = 8 bits

Tag bits = 64 – 6 – 8 = 50 bits

c) (4 points) Given a 2-way set-associative cache that uses 32-bit memory addresses divided

into 4 bits of offset, 12 bits of index, and 16 bits of tag. Starting with an empty cache, show

the tag, index, and way (block 0 or 1) for each of the following sequentially referenced

addresses and indicate whether the reference resulted in a hit or a miss. The replacement

policy used is FIFO.

Address Tag Index Way Hit / Miss

0x00553F0F 0x0055 0x3F0 0 Miss

0x00773F01 0x0077 0x3F0 1 Miss

0x00553F02 0x0055 0x3F0 0 Hit

0x005530AC 0x0055 0x30A 0 Miss

0x00773F07 0x0077 0x3F0 1 Hit

0x005530AA 0x0055 0x30A 0 Hit

0x009930AB 0x0099 0x30A 1 Miss

0x00993F05 0x0099 0x3F0 0 Miss

 Page 13 of 13

Q6. [12 points] Cache Performance

A processor runs at 2.5 GHz and has a CPI=1.7 for a perfect cache (i.e. without including the

stall cycles due to cache misses). Assume that load and store instructions are 15% of the

instructions. The processor has an I-cache with a 4% miss rate and a D-cache with 6% miss

rate. The hit time is 1 clock cycle for both caches. Assume that the time required to transfer a

block of data from the main memory to the cache, i.e. miss penalty, is 40 ns.

a) (4 Points) Compute the number of stall cycles per instruction and the overall CPI.

Combined misses per instruction = 4% + 15% × 6% = 0.049

Miss Penalty = 40 ns × 2.5 GHz = 100 cycles

Memory stall cycles per instruction = 0.049 × 100 = 4.9 cycles

Overall CPI = 1.7 + 4.9 = 6.6 cycles

b) (4 Points) Compute the average memory access time (AMAT) in ns.

AMAT(I-Cache) = Hit time + Miss rate(I-Cache) × Miss penalty

 = (1 cycle / 2.5 GHz) + 0.04 × 40 ns = 2 ns

AMAT(D-Cache) = Hit time + Miss rate(D-Cache) × Miss penalty

 = (1 cycle / 2.5 GHz) + 0.06 × 40 ns = 2.8 ns

AMAT = 1/(1+ %LS) × AMAT(I-Cache) + %LS/(1+%LS) × AMAT(D-Cache)

 = 1/(1+0.15) × 2 ns + 0.15/(1+0.15) × 2.8 ns = 2.104 ns

Alternative Solution:

Combined Miss Rate = Combined Misses per Instruction / (1 + %LS)

Combined Miss Rate = 0.049 / (1 + 0.15) = 0.0426

AMAT = 0.4 ns + 0.0426 × 40 ns = 2.104 ns

c) (4 Points) Discuss how the average memory access time (AMAT) can be reduced by

mentioning all the factors that could reduce it and for each factor explaining how it can be

done.

The average memory access time can be reduced by:

1. Reducing the Hit time by using Small and simple caches

2. Reducing the Miss Rate by using Larger cache size, higher associativity, and

larger block size

3. Reducing the Miss Penalty by using Multilevel caches

