
 Page 1 of 13

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering
Computer Engineering Department

COE 301 COMPUTER ORGANIZATION
ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Term 151 (Fall 2015-2016)
Final Exam

Sunday Dec. 20, 2015
8:00-11:00 AM

Time: 180 minutes, Total Pages: 14

Name:_KEY___________________________ ID:__________________ Section: _______

Notes:
• Do not open the exam book until instructed

• Answer all questions

• All steps must be shown

• Any assumptions made must be clearly stated

• Mobile phones must be switched off

Question Max Points Score
Q1 15
Q2 18
Q3 13
Q4 17
Q5 12

Total 75

Dr. Aiman El-Maleh
Dr. Mayez Al-Muhammad

 Page 2 of 13

 [15 Points]

(Q1)

(i) We wish to compare the performance of two different computers: M1 and M2.
The following measurements have been made for running a program (Program
1) on these computers:

Program 1 M1 M2

#Instructions Executed 5 × 109 6 × 109

CPI 1.2 1.25

Clock Rate 3 GHZ 5 GHZ

a. Which computer is faster for running the program and by how much?

 (3 points)

 Execution time for Program 1 on M1 = 5 × 109 × 1.2 × 1/(3 × 109) = 2 s

Execution time for Program 1 on M2 = 6 × 109 × 1.25 × 1/(5 × 109) = 1.5 s
Computer M2 is faster for program 1 and it is faster by a factor=2/1.5=1.33

b. Suppose the execution time of a second program (Program 2) on both
computers is given below.

Program 2 M1 M2

Execution Time 5.0 seconds 10.0 seconds

 Suppose that program 1 must be executed 1600 times each hour. Any
remaining time should be used to run program 2. Which computer is faster for
this workload? Performance is measured here by the throughput of program 2.

 (4 points)

Executing program 1 on M1 1600 times each hour will consume 1600x2=3200
seconds. Remaining time for running program 2 on M1= 3600-3200=400
seconds. Thus, program2 can be run in M1 400/5=80 times.

Executing program 1 on M2 1600 times each hour will consume
1600x1.5=2400 seconds. Remaining time for running program 2 on M1=
3600-2400=1200 seconds. Thus, program2 can be run in M2 1200/10=120
times. Thus, for this workload computer M2 is faster.

 Page 3 of 13

(ii) Consider two different implementations, M1 and M2, of the same instruction
set. There are three classes of instructions (A, B, and C) in the instruction set.
M1 has a clock rate of 6 GHz and M2 has a clock rate of 3 GHz. The CPI for
each instruction class on M1 and M2 is given in the following table:

Class CPI on M1 CPI on M2 C1 Usage C2 Usage
A 2 1 40% 60%
B 3 2 40% 15%
C 5 2 20% 25%

The above table also contains a summary of the usage of instruction classes
generate by two different compilers: C1 and C2. Assume that each compiler
generates the same number of instructions for a given program. Which
computer and compiler combination give the best performance? (5 points)

Exec. Time for M1 using C1 compiler = Ix(2x0.4+3x0.4+5x0.2) x1/(6×109)
=0.5I ns
Exec. Time for M2 using C1 compiler = Ix(1x0.4+2x0.4+2x0.2) x1/(3×109)
=0.53I ns
Exec. Time for M1 using C2 compiler = Ix(2x0.6+3x0.15+5x0.25)
x1/(6×109)=0.48I ns
Exec. Time for M2 using C2 compiler = Ix(1x0.6+2x0.15+2x0.25) x1/(3×109)
=0.47I ns

Machine M2 and Compiler C2 will give the best performance.

(iii) A benchmark program runs for 200 seconds. We want to improve the
execution time of the benchmark by a factor of 2.5. We enhance the floating-
point unit to make the floating-point instructions run 4 times faster. How much
of the initial execution time would floating-point instructions have to account
for to show an overall speedup of 2.5 on this benchmark?

(3 points)

Speedup = 1 / (f/s + (1-f)) => 2.5 = 1 / (f/4+(1-f)) => f/4 + 1-f = 1/2.5 => f + 4
– 4f = 1.6 => 3f = 2.4 => f =0.8

Thus, floating-point instructions must account for 80% of the initial execution
time to show an overall speedup of 2.5 on this benchmark.

OR

80 = 200*f/4 + (1-f)*200 => 80 = 50 f + 200 – 200 f => 150 f = 120 => f
=120/150 = 0.8

 Page 4 of 13

[18 Points]

(Q2) Consider the 5-stage pipelined CPU design given below:

(i) Show the control signals that will be used for stalling the pipeline due to data
hazards along with their conditions. Add the necessary changes to the design,
on the given diagram, to allow it to handle data hazards. (5 points)

if ((MemRead3 == 1) // Detect Load in EX stage
and (ForwardA==1 or ForwardB==1)) Stall // RAW Hazard

OR:

 if ((MemRead3 == 1)
 and (Rd3 ≠ 0) and ((Rs == Rd3) or (Rt == Rd3))) Stall

Stall means that the signals PCWrite=0 and IRWrite=0, which will freeze the
content of PC and IR registers and bubble=1 which will introduce a bubble in
stage 2 control register by setting the control signals to 0.

 Page 5 of 13

(ii) Consider the instruction sequence given below:

lw $t1, ($s0)
sw $t1, ($s1)

We can forward that data of lw instruction to the next sw instruction as
required by the above example. However, such forwarding is not supported by
the given 5-stage pipeline CPU design.

a. Show the required changes in the datapath and forwarding unit to support such
forwarding.

b. Write the condition for generating the forwarding control signal. Identify the
pipeline registers and control signals used by the sw and lw instructions when
writing the condition.

 (6 points)

We need a multiplexer at the B input in the EX/MEM register as shown in the
diagram. The data loaded from the Data Memory should be fed back at the
input of the multiplexer. A control signal, ForwardC, is needed to control the
selection of this multiplexer. The Forwarding unit in the ID stage will generate
the ForwardC signal and pipeline it, after detecting the dependency between a
SW and a previous LW instruction.

ForwardC=0 means no forwarding,
ForwardC=1 means forward the load data from the MEM stage.

Condition for generating ForwardC:

If (MemRead3 == 1 and MemWrite == 1 and Rd3 ≠ 0 and Rt == Rd3)
ForwardC = 1
Else ForwardC = 0.

 Page 6 of 13

(iii) Consider the following MIPS assembly language code: (7 Points)

I1: ADDI $s0, $0, 10
I2: ADD $s0, $s0, $s0
I3: SLL $s0, $s0, 4
I4: LW $s1, 4($s0)
I5: ADDI $s2, $s1, -1
I6: SW $s2, 4($s0)

Complete the following table showing the timing of the above code on the 5-stage
pipeline given in part (i) (IF, ID, EX, MEM, WB) assuming that it supports
forwarding and pipeline stall. Draw an arrow showing forwarding between the
stage that provides the data and the stage that receives the data. Show all stall
cycles (draw an X in the box to represent a stall cycle). Determine the number of
clock cycles to execute this code.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I1: ADDI IF ID EX - WB

I2: ADD IF ID EX - WB

I3: SLL IF ID EX - WB

I4: LW IF ID EX M WB

I5: ADDI IF X ID EX - WB

I6: SW IF ID EX M -

The number of clock cycles to execute this code is 10.

 Page 7 of 13

[13 Points]

(Q3)

(i) Fill in the blanks in each of the following questions: (8 points)

1. The Direct Mapped Cache organization leads to a fast access time but lacks
flexibility in block placement compared to fully associative mapping.

2. The Fully Associative Cache organization leads to a slow access time due to
the multiplexer used but has a lot of flexibility in block placement.

3. Access time of a Set Associative Cache varies with the set size.

4. With the Write Through policy, every write to cache is propagated to DRAM,
which makes DRAM data always coherent with the cached data. A Write
Through cache may not use a write allocate policy.

5. With the Write Back policy, multiple writes to a block accumulate in the
cache, but the block will be written back to DRAM if it has been modified. A
Write Back cache must use a write allocate policy.

6. In a 4-way set-associative cache with 64 Kbyte data capacity (i.e. not counting
tag and other bits), and with a 64 byte block size, the number of bits used for
the offset is Six and the number of bits for the index is Eight.

7. In a FIFO replacement policy, one counter is used per set to replace the
Oldest block.

 Page 8 of 13

(ii) (5 points)

1. A memory system consists of memory modules M00 , M01 , M10 and M11 which are
interconnected using the below drawing, where the address is 5-bit A4 A3 A2 A1 A0.

Assume two 32-bit data to be written in the above memory system at the
corresponding addresses as shown in the table below:

Address A4 A3 A2 A1 A0 01010 10100
Data Values (Hex) 4326016A A3414640

Fill in the table below to show where the above data values for the given addresses
will be written in the above memories:

2. Now the four memory modules M00 , M01 , M10 and M11 are interconnected using the

below drawing:

Assume three 32-bit data to be written in the above memory system at the
corresponding addresses as shown in the table below:

Address A4 A3 A2 A1 A0 01010 10100 11000
Data Values (Hex) 4326016A A3414640 FEF12306

Fill in the table below to show where the data values for the given addresses will be
stored in the memories:

A4 A3 A2 A1 A0 M00 M01 M10 M11
01010 4326016A

10100 A3414640

11000 FEF12306

A4 A3 A2 A1 A0 M00 M01 M10 M11
01010 6A 01 26 43

10100 40 46 41 A3

 Page 9 of 13

[17 Points]

(Q4) A 4 GHz CPU uses a unified cache memory (Both IC and DC) with the following
specs:

1. The cache hit time is 2 ns.
2. The cache hit probability is 0.93
3. The main memory access is 30 ns.
4. The CPI=2 clocks when instruction fetch and data fetch results in hits.
5. The probability of load/store instructions P(L/S)= 0.25

Answer each of the following questions:

(i) How many clocks there are in one DRAM access time? (1 point)

CR= 4 GHz; CT=0.25 ns; Tmm= 30 ns,
Hence, DRAMclocks = 30/0.25=120 clocks

(ii) Evaluate the Average Memory Access Time (AMAT), the average number of
stalls per access (stalls/access), average number of stalls per instruction
(stalls/ins) and the CPI. (4 points)

AMAT = 2 + 0.07*30 = 4.1 ns ;
stalls/access = 0.07*120 = 8.4 clocks
stalls/instr. = 1.25*0.07*120= 10.4 clocks
CPI = 2 + stalls/instr. = 2 + 10.4 = 12.4 clocks

(iii) Suppose the CPU is enhanced by increasing its clock rate to 5 GHz. Evaluate
the speedup of the enhanced CPU compared to the original CPU. (4 points)

If CR=5 GHz, CT=0.2 ns, then DRAMclocks= 30/0.2 ns= 150 clocks
CPInew = 2 + 1.25*0.07*150 = 15.125 clocks
Speedup S = (CPIo * CTo) / (CPIn * CTn)=
 (12.4 * 0.25)/ (15.125 * 0.2)= 3.1/3.025= 1.025
The enhanced CPU is 2.5% faster than the previous one.

 Page 10 of 13

(iv) Suppose the CPU uses a Write-Through policy with a write buffer. The write
buffer access time is 10 ns but the probability to be found free is 0.75 and it
takes 15ns to free one buffer slot if found full. Assume that when the buffer
is full, it will be written after a slot is made free. Evaluate the AMAT for data
accesses only. Assume that the probability of load and store instructions is the
same. (4 points)

AMAT= Prob(read)xAvReadTimes + Prob(write)x[(Prob(WBfree) x
WritePenalty + Prob(WBfull)x(TimetoFree +WritePenalty)] =

0.5* 4.1 + 0.5*(0.75*10 + 0.25* (15 + 10)) = 8.925 ns

(v) Suppose we use a split cache with IC and DC having:
1. IC: 1 ns access time and 0.95 hit probability,
2. DC: 2 ns access time and 0.91 hit probability.

The main memory is the same as above. Evaluate the AMAT(IC) and
AMAT(DC) and the CPU AMAT. (4 points)

AMAT(IC) = 1 + 0.05*30 = 2.5 ns; AMAT(IC)= 2 + 0.09*30 = 4.7 ns
 AMAT (CPU) = AMAT(IC) *1/1.25 + AMAT(IC)* 0.25/1.25= 2.94 ns

 Page 11 of 13

[12 Points]

(Q5)

(i) (9 points)

A sequence of four branches are shown in the first column of the Table below
with their respective PC value, branch target address, and next PC. These braches
are executed in four passes (pass 1 to 4). The actual branch outcomes of each
branch in each pass are shown in columns 2, 3, 4 and 5, respectively, where T
represents a taken branch and NT represents a not taken branch. Assume a Branch
Target Buffer (BTB) is used for early prediction of taken branches.

Four Branches with their respective
PC values, branch target address,
and next PC.

 Branch outcomes in four passes

Actual
Branch
outcome
In pass 1

Actual
Branch
outcome
In pass 2

Actual
Branch
outcome
In pass 3

Actual
Branch
outcome
In pass 4

00010 Beq -,-, (target=00100)
00011 ….
..
00101 Beq -,-, (target=00111)
00110 ….
..
01000 Beq -,-, (target=10010)
01001 ….
..
01011 Beq -,-, (target=01101)
01100 ….

 NT

T

NT

T

 T

T

T

NT

 NT

NT

T

NT

 NT

T

NT

T

1. Fill in the BTB entries for PC, target and initial prediction (T for all) for the above
four branches. Fill in the prediction in BTB table following each pass (1 to 4) by
assuming a 1-bit prediction. (2 points)

2. Repeat the above question by predicting the branch outcome using a 2-bit
saturating counter (given below). Denote by NT1 and T1 the weak NT and weak
T, respectively. Assume initial prediction of strong predict taken. (2 points)

BTB BTB Prediction just after pass k (1 to 4)
PC Target Prediction

initial
Prediction
pass 1

Prediction
pass 2

Prediction
pass 3

Prediction
pass 4

00010 00100 T NT T NT NT
00101 00111 T T T NT T
01000 10010 T NT T T NT
01011 01101 T T NT NT T

 Page 12 of 13

Answer the following questions:

a. Using all the above branches, evaluate the probability of correct prediction

(Pcorrect). (2 points)

Probability of correct prediction Pcorrect = (1+3+2+1)/ 16= 7/16 = 0.4375

b. Assume that each miss-prediction incurs 2 stalls to the CPU and the
probability an instruction to be branch is 0.18. Assume the CPI =2 when
all the predictions are correct. Evaluate the CPI based on the above four
passes. (3 points)

CPI = CPI + 0.18* (1-7/16)* 2 = 2 + 0.18* (9/16)* 2 = 2.2025

BTB BTB Prediction just after pass k (1 to 4)
PC Target Prediction

initial
Prediction
pass 1

Prediction
pass 2

Prediction
pass 3

Prediction
pass 4

00010 00100 T T1 T T1 NT1
00101 00111 T T T T1 T
01000 10010 T T1 T T T1
01011 01101 T T T1 NT1 T1

 Page 13 of 13

(ii) (3 points)
A loop can take one of the following two constructs:

Repeat: …
 …
 Beq -,-, Repeat

or
Repeat: Beq -,-, Exit
 …
 J Repeat
Exit:

Prove that a 2-bit history prediction is always better than a 1-bit history prediction
when the above loop (either of its constructs) is executed many times and its entry is
maintained in BTB.

Solution:

Using a 1-bit history prediction, the prediction will be NT (T for type 2) at the end
of the first pass because the last iteration the branch is not taken (taken for type 2).
This is true disregarding the initial prediction. Hence, when the same loop is
executed again there will always be one mis-prediction in first iteration of each
subsequent execution of the loop for both type-1 and type-2.
Consider now a 2-bit history, the prediction will be T1 (N1 for type-2) at the end
of the first pass because the last iteration the branch is not taken (T for Type 2).
This is true disregarding the initial prediction. Hence, when the same loop is
executed again there will always be correct prediction in first iteration of each
subsequent execution of the loop.

