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          [15   Points] 

(Q1)  

(i) We wish to compare the performance of two different computers: M1 and M2.  
The following measurements have been made for running a program (Program 
1) on these computers: 

 
Program 1 M1 M2 

#Instructions Executed 5 × 109 6 × 109 

CPI 1.2 1.25 

Clock Rate 3 GHZ 5 GHZ 
 
 

a. Which computer is faster for running the program and by how much?  

  (3 points) 
 
 
  Execution time for Program 1 on M1 = 5 × 109 × 1.2 × 1/(3 × 109) = 2 s 

Execution time for Program 1 on M2 = 6 × 109 × 1.25 × 1/(5 × 109) = 1.5 s 
Computer M2 is faster for program 1 and it is faster by a factor=2/1.5=1.33 
 

 

b. Suppose the execution time of a second program (Program 2) on both 
computers is given below.  

 

Program 2 M1 M2 

Execution Time 5.0 seconds 10.0 seconds 

 

 Suppose that program 1 must be executed 1600 times each hour. Any 
remaining time should be used to run program 2. Which computer is faster for 
this workload? Performance is measured here by the throughput of program 2.  

  (4 points) 
 
 

Executing program 1 on M1 1600 times each hour will consume 1600x2=3200 
seconds. Remaining time for running program 2 on M1= 3600-3200=400 
seconds. Thus, program2 can be run in M1 400/5=80 times. 
 
Executing program 1 on M2 1600 times each hour will consume 
1600x1.5=2400 seconds. Remaining time for running program 2 on M1= 
3600-2400=1200 seconds. Thus, program2 can be run in M2 1200/10=120 
times. Thus, for this workload computer M2 is faster. 
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(ii) Consider two different implementations, M1 and M2, of the same instruction 
set. There are three classes of instructions (A, B, and C) in the instruction set. 
M1 has a clock rate of 6 GHz and M2 has a clock rate of 3 GHz. The CPI for 
each instruction class on M1 and M2 is given in the following table: 

 

Class CPI on M1 CPI on M2 C1 Usage C2 Usage 
A 2 1 40% 60% 
B 3 2 40% 15% 
C 5 2 20% 25% 

 

The above table also contains a summary of the usage of instruction classes 
generate by two different compilers: C1 and C2. Assume that each compiler 
generates the same number of instructions for a given program. Which 
computer and compiler combination give the best performance?  (5 points) 

 

    
Exec. Time for M1 using C1 compiler = Ix(2x0.4+3x0.4+5x0.2) x1/(6×109) 
=0.5I ns 
Exec. Time for M2 using C1 compiler = Ix(1x0.4+2x0.4+2x0.2) x1/(3×109) 
=0.53I ns 
Exec. Time for M1 using C2 compiler = Ix(2x0.6+3x0.15+5x0.25) 
x1/(6×109)=0.48I ns 
Exec. Time for M2 using C2 compiler = Ix(1x0.6+2x0.15+2x0.25) x1/(3×109) 
=0.47I ns 
 
Machine M2 and Compiler C2 will give the best performance.                                              

 
 
 

(iii) A benchmark program runs for 200 seconds. We want to improve the 
execution time of the benchmark by a factor of 2.5. We enhance the floating-
point unit to make the floating-point instructions run 4 times faster. How much 
of the initial execution time would floating-point instructions have to account 
for to show an overall speedup of 2.5 on this benchmark?  

(3 points) 
 

Speedup = 1 / (f/s + (1-f)) => 2.5 = 1 / (f/4+(1-f)) => f/4 + 1-f = 1/2.5 => f + 4 
– 4f = 1.6 => 3f = 2.4 => f =0.8 
 
Thus, floating-point instructions must account for 80% of the initial execution 
time to show an overall speedup of 2.5 on this benchmark. 

OR 
  

80 = 200*f/4 + (1-f)*200 => 80 = 50 f + 200 – 200 f => 150 f = 120 => f 
=120/150 = 0.8 
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[18 Points] 

(Q2) Consider the 5-stage pipelined CPU design given below: 
 

 
 

 

(i) Show the control signals that will be used for stalling the pipeline due to data 
hazards along with their conditions. Add the necessary changes to the design, 
on the given diagram, to allow it to handle data hazards. (5 points) 

 
 

if ((MemRead3 == 1)   // Detect Load in EX stage 
and (ForwardA==1 or ForwardB==1))  Stall  // RAW Hazard 

 
OR: 
 
   if ((MemRead3 == 1)  
   and (Rd3 ≠ 0) and ((Rs == Rd3) or (Rt == Rd3))) Stall 
 
Stall means that the signals PCWrite=0 and IRWrite=0, which will freeze the 
content of PC and IR registers and bubble=1 which will introduce a bubble in 
stage 2 control register by setting the control signals to 0. 
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(ii) Consider the instruction sequence given below: 
 

lw $t1, ($s0) 
sw $t1, ($s1) 

 
We can forward that data of lw instruction to the next sw instruction as 
required by the above example. However, such forwarding is not supported by 
the given 5-stage pipeline CPU design. 
 

a. Show the required changes in the datapath and forwarding unit to support such 
forwarding.  

b. Write the condition for generating the forwarding control signal. Identify the 
pipeline registers and control signals used by the sw and lw instructions when 
writing the condition. 

            (6 points) 
 

 
 

We need a multiplexer at the B input in the EX/MEM register as shown in the 
diagram. The data loaded from the Data Memory should be fed back at the 
input of the multiplexer. A control signal, ForwardC, is needed to control the 
selection of this multiplexer. The Forwarding unit in the ID stage will generate 
the ForwardC signal and pipeline it, after detecting the dependency between a 
SW and a previous LW instruction. 
 
ForwardC=0 means no forwarding, 
ForwardC=1 means forward the load data from the MEM stage. 
 
Condition for generating ForwardC: 
 
If   (MemRead3 == 1 and MemWrite == 1 and  Rd3 ≠ 0 and Rt == Rd3) 
ForwardC = 1  
Else ForwardC = 0. 
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(iii) Consider the following MIPS assembly language code: (7 Points) 

I1: ADDI $s0, $0, 10   
I2: ADD  $s0, $s0, $s0  
I3: SLL  $s0, $s0, 4  
I4: LW   $s1, 4($s0)  
I5: ADDI $s2, $s1, -1 
I6: SW   $s2, 4($s0)  
  

 

Complete the following table showing the timing of the above code on the 5-stage 
pipeline given in part (i) (IF, ID, EX, MEM, WB) assuming that it supports 
forwarding and pipeline stall. Draw an arrow showing forwarding between the 
stage that provides the data and the stage that receives the data. Show all stall 
cycles (draw an X in the box to represent a stall cycle). Determine the number of 
clock cycles to execute this code.  

 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I1: ADDI IF ID EX - WB           

I2: ADD  IF ID EX - WB          

I3: SLL   IF ID EX - WB         

I4: LW    IF ID EX M WB        

I5: ADDI     IF X ID EX - WB      

I6: SW       IF ID EX  M -     

 
 
 

The number of clock cycles to execute this code is 10.  
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[13 Points] 

(Q3)  
 

(i) Fill in the blanks in each of the following questions:  (8 points) 
 
 

1. The Direct Mapped Cache organization leads to a fast access time but lacks 
flexibility in block placement compared to fully associative mapping. 

 
 

2. The Fully Associative Cache organization leads to a slow access time due to 
the multiplexer used but has a lot of flexibility in block placement. 

 
 

3. Access time of a Set Associative Cache varies with the set size.  
 
 

4. With the Write Through policy, every write to cache is propagated to DRAM, 
which makes DRAM data always coherent with the cached data. A  Write 
Through cache may not use a write allocate policy. 

 
 

5. With the Write Back policy, multiple writes to a block accumulate in the 
cache, but the block will be written back to DRAM if it has been modified.  A 
Write Back cache must use a write allocate policy. 

 
 

6. In a 4-way set-associative cache with 64 Kbyte data capacity (i.e. not counting 
tag and other bits), and with a 64 byte block size, the number of bits used for 
the offset is Six and the number of bits for the index is Eight. 

 
 
 
 
 
 

7. In a FIFO replacement policy, one counter is used per set to replace the 
Oldest block. 
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(ii)  (5 points) 
 

1. A memory system consists of memory modules M00 , M01 , M10 and M11 which are 
interconnected using the below drawing, where the address is 5-bit A4 A3 A2 A1 A0.  

 
Assume two 32-bit data to be written in the above memory system at the 
corresponding addresses as shown in the table below: 
 

Address  A4 A3 A2 A1 A0 01010 10100 
Data  Values (Hex) 4326016A A3414640 

 
Fill in the table below to show where the above data values for the given addresses 
will be written in the above memories: 

 
2. Now the four memory modules M00 , M01 , M10 and M11 are interconnected using the 

below drawing: 

 
Assume three 32-bit data to be written in the above memory system at the 
corresponding addresses as shown in the table below: 
   

Address  A4 A3 A2 A1 A0 01010 10100 11000 
Data  Values (Hex) 4326016A A3414640 FEF12306 

 
Fill in the table below to show where the data values for the given addresses will be 
stored in the memories: 
 

A4 A3 A2 A1 A0 M00 M01 M10 M11 
01010  4326016A   

10100   A3414640  

11000    FEF12306 
 

A4 A3 A2 A1 A0 M00 M01 M10 M11 
01010 6A 01 26 43 

10100 40 46 41 A3 
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[17 Points] 

(Q4)  A 4 GHz CPU uses a unified cache memory (Both IC and DC) with the following 
specs:  

1. The cache hit time is 2 ns. 
2. The cache hit probability is 0.93 
3. The main memory access is 30 ns.  
4. The CPI=2 clocks when instruction fetch and data fetch results in hits.   
5. The probability of load/store instructions P(L/S)= 0.25 

 
Answer each of the following questions:  
 

(i) How many clocks there are in one DRAM access time? (1 point) 
 

CR= 4 GHz; CT=0.25 ns; Tmm= 30 ns,  
Hence, DRAMclocks = 30/0.25=120 clocks 

 

(ii) Evaluate the Average Memory Access Time (AMAT), the average number of 
stalls per access (stalls/access), average number of stalls per instruction 
(stalls/ins) and the CPI. (4 points) 

 
AMAT         = 2 + 0.07*30 =   4.1 ns ;    
stalls/access = 0.07*120 = 8.4 clocks            
stalls/instr.   = 1.25*0.07*120= 10.4  clocks    
CPI = 2 + stalls/instr. =  2 +  10.4  = 12.4 clocks    

 

(iii) Suppose the CPU is enhanced by increasing its clock rate to 5 GHz. Evaluate 
the speedup of the enhanced CPU compared to the original CPU. (4 points) 

 
If CR=5 GHz, CT=0.2 ns, then DRAMclocks= 30/0.2 ns= 150 clocks  
CPInew = 2 + 1.25*0.07*150 = 15.125 clocks 
Speedup  S = (CPIo * CTo  ) / (CPIn * CTn)=  
                       (12.4 * 0.25)/ (15.125 * 0.2)= 3.1/3.025= 1.025 
The enhanced CPU is 2.5% faster than the previous one. 
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(iv) Suppose the CPU uses a Write-Through policy with a write buffer. The write 
buffer access time is 10 ns but the probability to be found free is 0.75 and it 
takes 15ns to free one buffer slot if found full.  Assume that when the buffer 
is full, it will be written after a slot is made free. Evaluate the AMAT for data 
accesses only. Assume that the probability of load and store instructions is the 
same. (4 points) 

AMAT= Prob(read)xAvReadTimes + Prob(write)x[ (Prob(WBfree) x 
WritePenalty + Prob(WBfull)x(TimetoFree +WritePenalty) ] = 

0.5* 4.1 + 0.5*(0.75*10 + 0.25* (15 + 10) ) = 8.925 ns                     

 

(v) Suppose we use a split cache with IC and DC having: 
1. IC: 1 ns access time and 0.95 hit probability, 
2. DC: 2 ns access time and 0.91 hit probability. 

The main memory is the same as above. Evaluate the AMAT(IC) and 
AMAT(DC) and the CPU AMAT. (4 points) 

 
 

AMAT(IC) = 1 + 0.05*30 = 2.5  ns;  AMAT(IC)= 2 + 0.09*30 = 4.7 ns          
                 AMAT (CPU) = AMAT(IC) *1/1.25  + AMAT(IC)* 0.25/1.25= 2.94 ns  
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[12 Points] 
 
(Q5)   

(i) (9 points)  
 
A sequence of four branches are shown in the first column of the Table below 
with their respective PC value, branch target address, and next PC.  These braches 
are executed in four passes (pass 1 to 4). The actual branch outcomes of each 
branch in each pass are shown in columns 2, 3, 4 and 5, respectively, where T 
represents a taken branch and NT represents a not taken branch. Assume a Branch 
Target Buffer (BTB) is used for early prediction of taken branches.  
 

 
Four Branches with their respective 
PC values, branch target address, 
and next PC.   

               Branch outcomes in four passes 

Actual 
Branch 
outcome 
In pass 1 

Actual 
Branch 
outcome 
In pass 2 

Actual 
Branch 
outcome 
In pass 3 

Actual 
Branch 
outcome 
In pass 4 

00010      Beq  -,-, (target=00100) 
00011      …. 
.. 
00101      Beq  -,-, (target=00111) 
00110      …. 
.. 
01000      Beq  -,-, (target=10010) 
01001      …. 
.. 
01011      Beq  -,-, (target=01101) 
01100      …. 

       NT 
 

 
T 
 
 

NT 
 
 

T 
 

         T 
 

 
T 

 
 

T 
 
 

NT 
 

      NT 
 

 
NT 

 
 

T 
 

 
NT 

 

        NT 
 

 
T 
 
 

NT 
 

 
T 

 

 
 

1. Fill in the BTB entries for PC, target and initial prediction (T for all) for the above 
four branches. Fill in the prediction in BTB table following each pass (1 to 4) by 
assuming a 1-bit prediction. (2 points) 

 
 
 
 
 
 
 

 
 

2. Repeat the above question by predicting the branch outcome using a 2-bit 
saturating counter (given below). Denote by NT1 and T1 the weak NT and weak 
T, respectively. Assume initial prediction of strong predict taken. (2 points) 

 

 

BTB  BTB Prediction just after pass k (1 to 4) 
PC Target Prediction 

initial 
Prediction 
pass 1 

Prediction 
pass 2 

Prediction 
pass 3 

Prediction 
pass 4 

00010 00100 T NT T NT NT 
00101 00111 T T T NT T 
01000 10010 T NT T T NT 
01011 01101 T T NT NT T 



 Page 12 of 13
 

 
 
 
 
 
 
 
 
 
Answer the following questions: 

 
a. Using all the above branches, evaluate the probability of correct prediction 

(Pcorrect). (2 points) 
 

Probability of correct prediction Pcorrect = (1+3+2+1)/ 16= 7/16 = 0.4375 
 

b. Assume that each miss-prediction incurs 2 stalls to the CPU and the 
probability an instruction to be branch is 0.18. Assume the CPI =2 when 
all the predictions are correct. Evaluate the CPI based on the above four 
passes. (3 points) 

 

CPI = CPI + 0.18* (1-7/16)* 2  =  2 + 0.18* (9/16)* 2  = 2.2025  
 

 
 
 
 
 
 
 
 

BTB  BTB Prediction just after pass k (1 to 4) 
PC Target Prediction 

initial 
Prediction 
pass 1 

Prediction 
pass 2 

Prediction 
pass 3 

Prediction 
pass 4 

00010 00100 T T1 T T1 NT1 
00101 00111 T T T T1 T 
01000 10010 T T1 T T T1 
01011 01101 T T T1 NT1 T1 
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(ii) (3 points)  
A loop can take one of the following two constructs:  

Repeat:      … 
                    … 
                   Beq  -,-, Repeat 

or 
Repeat:      Beq  -,-, Exit 
                    … 
                    J  Repeat 
Exit: 

 
Prove that a 2-bit history prediction is always better than a 1-bit history prediction 
when the above loop (either of its constructs) is executed many times and its entry is 
maintained in BTB. 
 
Solution: 

Using a 1-bit history prediction, the prediction will be NT (T for type 2) at the end 
of the first pass because the last iteration the branch is not taken (taken for type 2).  
This is true disregarding the initial prediction. Hence, when the same loop is 
executed again there will always be one mis-prediction in first iteration of each 
subsequent execution of the loop for both type-1 and type-2.  
Consider now a 2-bit history, the prediction will be T1 (N1 for type-2) at the end 
of the first pass because the last iteration the branch is not taken (T for Type 2).  
This is true disregarding the initial prediction. Hence, when the same loop is 
executed again there will always be correct prediction in first iteration of each 
subsequent execution of the loop.  
 

 
 

 


