King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 301 COMPUTER ORGANIZATION ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE Term 161 (Fall 2016-2017) Major Exam 2 Saturday Dec. 10, 2016

Time: 150 minutes, Total Pages: 13

 Name:
 ID:
 Section:

Notes:

- Do not open the exam book until instructed
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Max Points	Score
Q1	20	
Q2	10	
Q3	17	
Q4	23	
Total	70	

Dr. Aiman El-Maleh Dr. Marwan Abu Amara

[20 Points]

(Q1) Write MIPS programs with <u>minimal</u> used instructions. Use <u>MIPS programming</u> <u>convention</u> in saving and restoring registers in procedures.

- (i) [4 points] Write a procedure GetAscii that receives a single hexadecimal digit in register \$a0 and returns the ASCII code of that digit in register \$v0. For example, if \$a0=0x9 the procedure will return 0x39 in \$v0 and if \$a0=0xA, the procedure will return 0x41 in \$a0. Assume the use of capital letters for the digits A to F.
- (ii) [11 points] Write a procedure **DispHex** that receives a number in register \$a0 and displays the hexadecimal representation of that number. Only significant hexadecimal digits need to be displayed. For example, if \$a0=0x1E, the procedure will display 1E. Your DisHex procedure should utilize the GetAscii procedure.
- (iii) [5 points] Write a MIPS program that asks the user to enter a decimal number and displays its hexadecimal content using the **DispHex** procedure. Two sample runs of the program are given below:

Enter a decimal number: 260 Your number in hexadecimal is: 0x104

Enter a decimal number: 0 Your number in hexadecimal is: 0x0

.data Prompt: .asciiz "Enter a decimal number: " MSG: .asciiz "Your number in hexadecimal is: 0x" TTable: .ascii "0123456789ABCDEF" .text

la \$a0, Prompt li \$v0, 4 syscall li \$v0, 5 syscall move \$s0, \$v0 la \$a0, MSG li \$v0, 4 syscall move \$a0, \$s0 jal DispHex li \$v0, 10 syscall DispHex: #save registers addi \$sp, \$sp, -12 sw \$s0, 0(\$sp) sw \$s1, 4(\$sp) sw \$s2, 8(\$sp) li \$s0, 8 move \$s1, \$a0 li \$s2, 0 Next: rol \$\$1, \$\$1, 4 andi \$t0, \$s1, 0xF bne \$s2, \$0, Sig beq \$s0, 1, Sig beq \$t0, \$0, Skip li \$s2, 1 Sig: move \$a0, \$t0 addi \$sp, \$sp, -4 sw \$ra, (\$sp) jal GetAscii lw \$ra (\$sp) addi \$sp, \$sp, 4 move \$a0, \$v0 li \$v0, 11 syscall Skip: addi \$s0, \$s0, -1 bne \$s0, \$0, Next # restore registers lw \$s0, 0(\$sp) lw \$s1, 4(\$sp) lw \$s2, 8(\$sp) addi \$sp, \$sp, 12 jr \$ra

GetAscii:

la \$t0, TTable add \$t0, \$t0, \$a0 lb \$v0, (\$t0) jr \$ra

(Q2)

(i) [4 Points] Given that Multiplicand=0111 and Multiplier=1011 are signed 2's complement numbers, show the signed multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit signed number in HI and LO registers. Show the steps of your work.

Ite	eration	Multiplicand	Sign	Product =HI,LO		
0	Initialize	0111		0000 101 <mark>1</mark>		
1	LO[0] = 1 => ADD		0	0111 1011		
	Shift Product = (HI, LO) right 1 bit	0111		0011 110 <mark>1</mark>		
2	LO[0] = 1 => ADD		1	1010 1101		
	Shift Product = (HI, LO) right 1 bit	0111	overflow	<mark>01</mark> 101 011 <mark>0</mark>		
3	$LO[0] = 0 \Longrightarrow$ Do nothing		0	0101 0110		
	Shift Product = (HI, LO) right 1 bit	0111		0010 101 <mark>1</mark>		
4	$LO[0] = 1 \implies SUB (ADD 2's compl)$	1001	1	1011 1011		
	Shift Product = (HI, LO) right 1 bit			1101 1101		

(ii) [6 Points] Given that Dividend=0111 and Divisor=1011 are signed 2's complement numbers, show the signed division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work, and show the final result.

Since the Divisor is negative, we take its 2's complement \Rightarrow Divisor = 0101 Sign of <u>Quotient</u> = negative, Sign of <u>Remainder</u> = positive

Ite	eration	Remainder	Quotient	Divisor	Difference
		(HI)	(LO)		
0	Initialize	0000	0111	0101	
1	1: SLL, Difference	0000	1110	0101	1011
	2: Diff < 0 => Do Nothing	0000	1110	0101	
2	1: SLL, Difference	0001	1100	0101	1100
	2: Diff < 0 => Do Nothing	0001	1100	0101	
3	1: SLL, Difference	0011	1000	0101	1110
	2: Diff < 0 => Do Nothing	0011	1000	0101	
4	1: SLL, Difference	0111	0000	0101	0010
	2: Rem = Diff, set lsb Quotient	0010	0001	0101	
Fin	nal Result	0010	1111		

(Q3)

1. [2 Points] Find the decimal value of the following single precision float:

 $= + (1.0000010011000...0)_2 * 2^{(136-127)} = + (1.0000010011000...0)_2 * 2^9$ = +1000001001.1 = +521.5

2. [2 Points] Find the decimal value of the following single precision float:

 $= - (0.01100...0)_2 * 2^{-126} = -1.5 \times 2^{-128}$

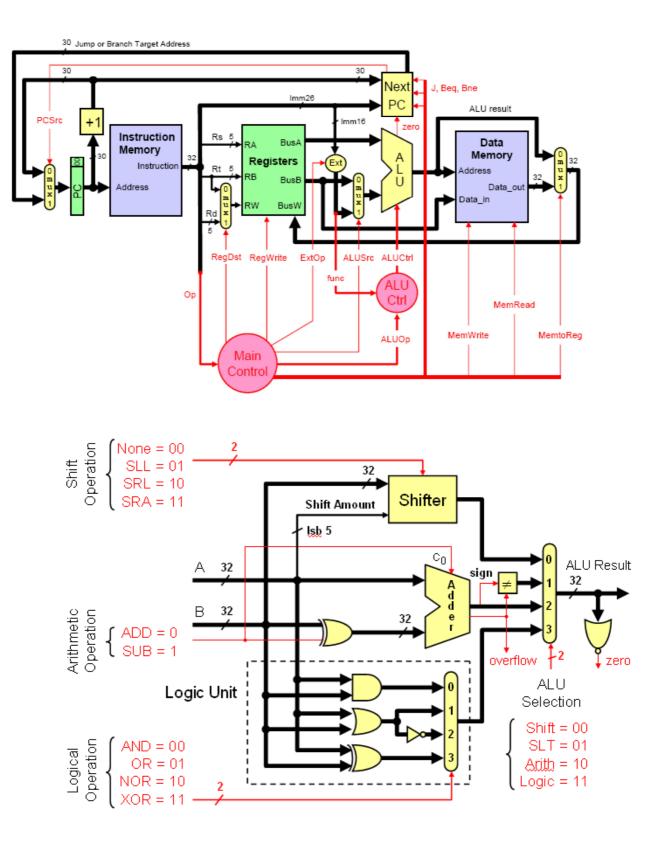
3. [3 Points] Find the normalized single precision representation of –59.625.

 $59.625 = 111011.101 = 1.11011101 * 2^5$

Exponent = 5 + 127 = 132

GRS

4. **[4 Points]** Round the given single precision float with the given GRS bits using the following rounding modes showing the resulting normalized number:

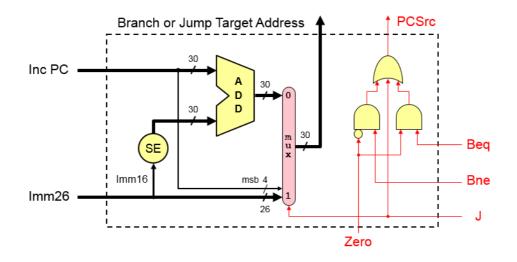

	+1.111	1111 1	111 1:	111 11	L11 11	L11 1(2-127	
Zero:	[+1.111	1111	1111	1111	1111	1111	x 2 ⁻¹²	27]
+infinity:	[+1.000	0000	0000	0000	0000	0000	x 2 ⁻¹²	²⁶]
-infinity:	[+1.111	1111	1111	1111	1111	1111	x 2 ⁻¹²	27]
Nearest E	ven: [<mark>+1.000</mark>	0000	0000	0000	0000	0000	x 2 ⁻¹²	26]

[

5. **[6 Points]** Find the normalized <u>difference</u> between **A** and **B** (i.e., A-B) by using rounding to <u>+infinity</u>. Perform the operation using **guard**, **round** and **sticky** bits.

		.000 01									
B = ·	+1.	.011 10	01 01	01 00	00 00	10 10	00 ×	2-1			
		1.000	0101	1100	1010	1000	0001	000	x	2 ⁴	
		1.011	1001	0101	0000	0010	1000	000	х	2 ⁻¹	
		01.000	0101	1100	1010	1000	0001	000	х	2 ⁴	
		00.000	0101	1100	1010	1000	0001	010	х	2 ⁴ (align)
		01.000	0101	1100	1010	1000	0001	000	х	2^4	
+		11.111	1010	0011	0101	0111	1110	110	х	2 ⁴ (2's complement)
		00.111								_	
=	+	0.111									
=	+	1.111	1111	1111	1111	1111	1111	100	\mathbf{x}	2 ³ (normalize)
=	+	10.000	0000	0000	0000	0000	0000		\mathbf{x}	2 ³ (round)
=	+	1.000	0000	0000	0000	0000	0000		x	2 ⁴ (renormalize)

(Q4) Consider the single-cycle datapath and control given below along with ALU design for the MIPS processor implementing a subset of the instruction set:

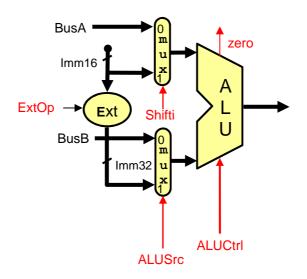


(i) Show the control signals generated for the execution of the following instructions by filling the table given below: (5 points)

Op	RegDst	RegWrite	ExtOp	ALUSrc	ALUOp	Beq	Bne	J	MemRead	MemWrite	MemtoReg
R-type	1 = Rd	1	x	0=BusB	R-type	0	0	0	0	0	0
slti	0 = Rt	1	1=sign	1=lmm	SLT	0	0	0	0	0	0
SW	x	0	1=sign	1=lmm	ADD	0	0	0	0	1	х
beq	x	0	x	0=BusB	SUB	1	0	0	0	0	х
j	х	0	x	х	x	0	0	1	0	0	х

(ii) Excluding the ALUOp, Beq, Bne and J signals, show the design of the control unit for the control signals given in the table above based on the given instructions. Assume that the opcode of these instructions is a 6-bit opcode such that the opcode for R-type instructions is 0, the opcode for slti is 1, the opcode for sw is 2, and so on for the rest of the instructions. (5 points)

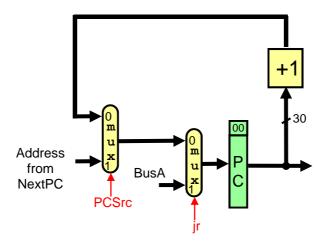
RegDst	<=	R-type	Op ⁶
RegWrite	<=	(R-type+ <u>slti</u>)	Decoder
ExtOp	<=	1	
ALUSrc	<=	(<u>slti</u> + <u>sw</u>)	A-type Sea Sea Sea Sea Sea Sea Sea Sea Sea Sea
MemRead	<=	0	Logic Equations
MemWrite	<=	<u>SW</u>	
<u>MemtoReg</u>	<=	0	 ALUop RegDst RegWrite ExtOp ALUSrc ALUSrc ALUSrc AlmemRead Ammread MemtoReg Bee Bee J



(iii) Show the design of the Next PC block. (4 points)

- (iv) We wish to add the following instructions to the MIPS single-cycle datapath. Add any necessary datapath modifications and control signals needed for the implementation of these instructions. Show only the <u>modified</u> and <u>added</u> components to the datapath.
 - a. sra (3 points)

	Instruction	Meaning			Fo	rmat		
sra	rd, rt, imm ⁵	rd= rt>>imm ¹⁶	$Op^6 = 0$	0	rt ⁵	rd ⁵	Imm ⁵	f ⁶ =3


For the sra instruction, examining the ALU one can see that the shift amont is coming through the A-input of the ALU and the operand to be shifted comes through the B input of the ALU. Thus, we need-to add a MUX on the A-input to select between the output of a register and the immediate values. This MUX needs to select only between the least significant 5 bits of BusA and bits 6 to 10 from Imm16. The modified part in the datapath is shown below:

b. jr (3 points)

Instruction	Meaning			Form	nat		
jr rs	PC=rs	$op^6 = 0$	rs ⁵	0	0	0	8

For this instruction, the changes required in the datapath to implement it is to load the PC from BusA, which is driven by the RS field. Thus, we need to add a MUX to select the target address to be loaded in the PC either from the output of the MUX choosing between the address from NextPC block and incremented PC or from BusA. The required changes are shown below:

- (v) Assume that the propagation delays for the major components used in the datapath are as follows:
 - Instruction and data memories: 120 ps
 - ALU and adders: 30 ps
 - Register file access (read or write): 14 ps
 - Main control: 8 ps
 - ALU control: 7 ps

Ignore the delays in the multiplexers, PC access, extension logic, and wires. What is the cycle time for the single-cycle datapath given above? (**3 points**)

Cycle Time = IM + max(Main Control+ALU Control, Register Reading) + ALU + DM + Register Write = 120 ps + 15 ps + 30 ps + 120 ps + 14 ps = 299 ps

Syscall Services:

Service	\$v0	Arguments / Result
Print Integer	1	<pre>\$a0 = integer value to print</pre>
Print Float	2	<pre>\$f12 = float value to print</pre>
Print Double	3	<pre>\$f12 = double value to print</pre>
Print String	4	<pre>\$a0 = address of null-terminated string</pre>
Read Integer	5	Return integer value in <mark>\$v0</mark>
Read Float	6	Return float value in <mark>\$f0</mark>
Read Double	7	Return double value in <mark>\$f0</mark>
Read String	8	<pre>\$a0 = address of input buffer \$a1 = maximum number of characters to read</pre>
Exit Program	10	
Print Char	11	<pre>\$a0 = character to print</pre>
Read Char	12	Return character read in \$v0

MIPS Instructions:

add \$\$\$1 \$\$\$2 \$\$\$2 \$\$\$1 \$\$\$3 \$\$\$3 \$\$\$1 \$\$\$3 \$\$\$1 \$\$\$2 \$\$\$1 \$\$\$2 \$\$\$1 \$\$\$2 \$\$\$3 \$\$\$2 \$\$\$3 \$\$\$2 \$\$\$3 \$\$\$2 \$\$\$3 \$\$\$2 \$\$\$3 \$\$\$3 \$\$\$3 \$\$\$2 \$\$\$3 \$\$\$3 <th cols<="" th=""><th>Inct</th><th>ruction</th><th>Meaning</th><th></th><th></th><th></th><th>РТ</th><th>ne F</th><th>orma</th><th>ŧ</th><th></th></th>	<th>Inct</th> <th>ruction</th> <th>Meaning</th> <th></th> <th></th> <th></th> <th>РТ</th> <th>ne F</th> <th>orma</th> <th>ŧ</th> <th></th>	Inct	ruction	Meaning				РТ	ne F	orma	ŧ	
addu \$\$1, \$\$2, \$\$3 \$\$1 = \$\$2 + \$\$3 \$\$0 = 0 \$\$1 = \$\$2 \$\$1 = \$\$3 \$1 = \$\$3 \$1 = \$\$3 \$1 = \$\$3			Meaning	00 -	- 0 r	r – ¢a					f – 0x20	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-			_					
subu \$s1 \$s2 \$s3 \$s1 \$s2 \$s3 \$rd \$s1 \$sa 0 f 0.233 Instruction Meaning R-Type Format and \$s1, \$s2, \$s3 \$s1 \$s2.8 \$s2 rt \$s3 rd \$s1 \$sa 0 f 0.223 xor \$s1, \$s2, \$s3 \$s1 \$s2.8 \$s2 rt \$s3 rd \$s1 \$sa 0 f 0.225 xor \$s1, \$s2, \$s3 \$s1 = \$s2.1 \$s3 rd \$s1 \$sa 0 f 0.226 xor \$s1, \$s2, \$s3 \$s1 = \$s2.1 \$s2 rt \$s3 rd \$s1 \$sa 0 f 0.226 xor \$s1, \$s2, 10 \$s1 \$s2<<												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				· ·								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				- 40	- 0 1	υ – ψ.					1-0/20	
or \$s1, \$s2, \$s3 \$s1 = \$s2 \$s3 op = 0 rs = \$s2 rt = \$s3 rt = \$s1 sa = 0 f = 0x25 xor \$s1, \$s2, \$s3 \$s1 = \$s2 ^ \$s3 op = 0 rs = \$s2 rt = \$s3 rd = \$s1 sa = 0 f = 0x25 nor \$s1, \$s2, \$s3 \$s1 = \$s2 ^ \$s3 op = 0 rs = \$s2 rt = \$s3 rd = \$s1 sa = 0 f = 0x26 Instruction Meaning R-Type Format s1 \$s1, \$s2, 10 \$s1 = \$s2 <<<10												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							_					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				· ·	_		_			-		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c } \hline sl & s1 & s2 & << 10 & op & = 0 & rs & = 0 & rt & = & s2 & rd & = & ss1 & sa & = 10 & f & = 0 \\ \hline srl & s1, s2, 10 & s1 & s2 & >> 10 & op & = 0 & rs & = 0 & rt & = & s2 & rd & = & ss1 & sa & = 10 & f & = 2 \\ \hline sra & s1, s2, 10 & s1 & s2 & >> 10 & op & = 0 & rs & = & 0 & rt & = & s2 & rd & = & ss1 & sa & = 10 & f & = 3 \\ \hline slv & s1, s2, s2, ss3 & s1 & = & s2 & << ss3 & op & = 0 & rs & = & ss3 & rt & = & s2 & rd & = & ss1 & sa & = 0 & f & = 4 \\ \hline srlv & s1, s2, s2, ss3 & s1 & = & s2 & >> & ss3 & op & = 0 & rs & = & ss3 & rt & = & s2 & rd & = & ss1 & sa & = 0 & f & = 4 \\ \hline srlv & s1, s2, s2, ss3 & s1 & = & s2 & >> & ss3 & op & = 0 & rs & = & ss3 & rt & = & ss2 & rd & = & ss1 & sa & = 0 & f & = 7 \\ \hline \hline lnstruction & Meaning & I-Type Format \\ \hline addi & ss1, s2, s2, 10 & ss1 & = & s2 & + 10 & op & = & 0x8 & rs & = & ss2 & rt & = & ss1 & imm^{16} & = 10 \\ \hline addiu & ss1, s2, 10 & ss1 & = & s2 & + 10 & op & = & 0x9 & rs & = & ss2 & rt & = & ss1 & imm^{16} & = 10 \\ \hline andi & ss1, s2, 10 & ss1 & = & s2 & 10 & op & = & 0xr & rs & = & ss2 & rt & = & ss1 & imm^{16} & = 10 \\ \hline ori & ss1, s2, 10 & ss1 & = & ss2 & 10 & op & = & 0xr & rs & = & ss2 & rt & = & ss1 & imm^{16} & = 10 \\ \hline sriv & ss1, s2, 10 & ss1 & = & ss2 & 10 & op & = & 0xr & rs & = & ss2 & rt & = & ss1 & imm^{16} & = 10 \\ \hline lui & ss1, 10 & ss1 & = & ss2 & 10 & op & = & 0 & rt & = & ss1 & imm^{16} & = 10 \\ \hline lui & ss1, 10 & ss1 & = & ss2 & rt & op & = & 0 & rt & = & ss1 & imm^{16} & = 10 \\ \hline lui & ss1, 10 & ss1 & = & ss2 & rt & ss1 & imm^{16} & = 10 \\ \hline lui & ss1, sal & pinnch & f(rs & = & rt) & op^6 & = & 1 & rs^5 & rt^5 & imm^{16} & \\ \hline loeq & rs, rt, label & branch & if (rs & = & rt) & op^6 & = & rs^5 & 0 & imm^{16} \\ \hline loet & rs, label & branch & if (rs & = & 0) & op^6 & = & rs^5 & 0 & imm^{16} \\ \hline loet & rs, label & branch & if (rs & = & 0) & op^6 & = & rs^5 & 1 & imm^{16} \\ \hline loet & rs, label & branch & if (rs & = & 0) & op^6 & = & rs^5 & 1 & imm^{16} \\ \hline loet & rs, rs, rt & rd = (rs < rt^2 rt) & op^6 & = & rs^5 & rt^5 & rd^5 & 0 & 0 & ox2$	nor	\$s1, \$s2, \$s3	\$s1 = ~(\$s2 \$s3)	op =	= 0 r:	s = \$s	52 rt =	\$s3 ro	1 = \$s1	sa = 0	f = 0x27	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Inst	ruction	Meaning									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	sll			<u> </u>								
	srl			+ · ·			_	_			-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				· ·								
srav \$s1,\$s2,\$s3 \$s1 = \$s2 >> \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f = 7 Instruction Meaning I-Type Format addi \$s1, \$s2, 10 \$s1 = \$s2 + 10 op = 0x8 rs = \$s2 rt = \$s1 imm ¹⁶ = 10 addiu \$s1, \$s2, 10 \$s1 = \$s2 + 10 op = 0x9 rs = \$s2 rt = \$s1 imm ¹⁶ = 10 andi \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0x9 rs = \$s2 rt = \$s1 imm ¹⁶ = 10 andi \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 andi \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 ori \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xe rs = \$s2 rt = \$s1 imm ¹⁶ = 10 iui \$s1, 10 \$s1 = 10 <<				<u> </u>	_		_					
Instruction Meaning I-Type Format addi \$s1, \$s2, 10 \$s1 = \$s2 + 10 op = 0x8 rs = \$s2 rt = \$s1 imm ¹⁶ = 10 addiu \$s1, \$s2, 10 \$s1 = \$s2 + 10 op = 0x9 rs = \$s2 rt = \$s1 imm ¹⁶ = 10 andi \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 ori \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 ori \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 xori \$s1, \$s2, 10 \$s1 = \$s2 ^ 10 op = 0xe rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, 10 \$s1 = 10 <<<16				<u> </u>			_				_	
addi \$\$1, \$\$2, 10 \$\$1 \$\$1 \$\$1 \$\$1 \$\$1 \$\$1 \$\$1 \$\$1 \$\$1 \$\$1	srav	\$s1,\$s2,\$s3	\$s1 = \$s2 >> \$s3	op :	= 0	rs = \$	s3 rt =	\$s2 rd	= \$s1	sa = 0	f = 7	
addiu \$s1, \$s2, 10 \$s1 = \$s2 + 10 op = 0x9 rs = \$s2 rt = \$s1 imm ¹⁶ = 10 andi \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 ori \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 xori \$s1, \$s2, 10 \$s1 = \$s2 ^ 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, \$s2, 10 \$s1 = \$s2 ^ 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, 10 \$s1 = 10 << 16 op = 0xc op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, 10 \$s1 = 10 << 16 op = 0xc op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, 10 \$s1 = 10 << 16 op = 0xc of = 1 s1 imm ¹⁶ = 10 lui \$s1, 10 \$s1 = s1 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ lui \$s1, 10 \$s1 = 10 << op = 6xc rs = \$s5 rt = \$s1 imm ¹⁶ beq rs, rt, label	Inst	ruction	Meaning				I-T	ype F	orma	t		
andi \$s1, \$s2, 10 \$s1 = \$s2 & 10 op = 0xc rs = \$s2 rt = \$s1 imm ¹⁶ = 10 ori \$s1, \$s2, 10 \$s1 = \$s2 10 op = 0xd rs = \$s2 rt = \$s1 imm ¹⁶ = 10 xori \$s1, \$s2, 10 \$s1 = \$s2 ^ 10 op = 0xe rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, \$s2, 10 \$s1 = \$s2 ^ 10 op = 0xe rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, \$s2, 10 \$s1 = \$s2 ^ 10 op = 0xe rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, 10 \$s1 = 10 <<	addi	\$s1, \$s2, 10	\$s1 = \$s2 + 10	ор	= 0x	8 rs	= \$s2	rt = \$	s1	imm ¹⁶	= 10	
ori \$s1, \$s2, 10 \$s1 = \$s2 10 op = 0xd rs = \$s2 rt = \$s1 imm ¹⁶ = 10 xori \$s1, \$s2, 10 \$s1 = \$s2 ^ 10 op = 0xe rs = \$s2 rt = \$s1 imm ¹⁶ = 10 lui \$s1, 10 \$s1 = 10 << 16	addiu	u \$s1, \$s2, 10	\$s1 = \$s2 + 10	_								
xori\$s1, \$s2, 10\$s1 = \$s2^{h} 10op = 0xers = \$s2rt = \$s1imm ¹⁶ = 10lui\$s1, 10\$s1 = 10 << 16op = 0xf0rt = \$s1imm ¹⁶ = 10InstructionMeaningFormatjlabeljump to labelop ⁶ = 2imm ²⁶ beqrs, rt, labelbranch if (rs == rt)op ⁶ = 4rs ⁵ rt ⁵ imm ¹⁶ bners, rt, labelbranch if (rs != rt)op ⁶ = 5rs ⁵ rt ⁵ imm ¹⁶ blezrs, labelbranch if (rs <=0)op ⁶ = 6rs ⁵ 0imm ¹⁶ bgtzrs, labelbranch if (rs <0)op ⁶ = 1rs ⁵ 0imm ¹⁶ bltzrs, labelbranch if (rs <0)op ⁶ = 1rs ⁵ 0imm ¹⁶ bgzzrs, labelbranch if (rs <1)op ⁶ = 0rs ⁵ 0imm ¹⁶ bltzrs, labelbranch if (rs <0)op ⁶ = 0rs ⁵ 0imm ¹⁶ bltzrs, labelbranch if (rs <1)op ⁶ = 0rs ⁵ 0imm ¹⁶ bltzrs, labelbranch if (rs <0)op ⁶ = 0rs ⁵ 1imm ¹⁶ bltzrs, rtrd=(rs <rt?1:0)< th="">op⁶ = 0rs⁵rt⁵rd⁵00x2asltrd, rs, rtrd=(rs<rt?1:0)< th="">op⁶ = 0rs⁵rt⁵rd⁵00x2a</rt?1:0)<></rt?1:0)<>												
Iui $\$s1, 10$ $\$s1 = 10 << 16$ $op = 0xf$ 0 $rt = \$s1$ $imm^{16} = 10$ InstructionMeaningFormatjlabeljump to label $op^6 = 2$ imm^{26} beqrs, rt, labelbranch if (rs == rt) $op^6 = 4$ rs^5 rt^5 imm^{16} bners, rt, labelbranch if (rs != rt) $op^6 = 5$ rs^5 rt^5 imm^{16} blezrs, labelbranch if (rs<=0)				·								
InstructionMeaningFormatjlabeljump to label $op^6 = 2$ imm^{26} beqrs, rt, labelbranch if (rs == rt) $op^6 = 4$ rs^5 rt^5 imm^{16} bners, rt, labelbranch if (rs != rt) $op^6 = 5$ rs^5 rt^5 imm^{16} blezrs, labelbranch if (rs <= 0)						_						
jlabeljump to label $op^6 = 2$ imm^{26} beqrs, rt, labelbranch if (rs == rt) $op^6 = 4$ rs^5 rt^5 imm^{16} bners, rt, labelbranch if (rs != rt) $op^6 = 5$ rs^5 rt^5 imm^{16} blezrs, labelbranch if (rs<=0) $op^6 = 6$ rs^5 0 imm^{16} bgtzrs, labelbranch if (rs > 0) $op^6 = 7$ rs^5 0 imm^{16} bltzrs, labelbranch if (rs < 0) $op^6 = 1$ rs^5 0 imm^{16} bgezrs, labelbranch if (rs >=0) $op^6 = 1$ rs^5 1 imm^{16} bgezrs, labelbranch if (rs>=0) $op^6 = 1$ rs^5 1 imm^{16} bgezrs, labelbranch if (rs>=0) $op^6 = 1$ rs^5 1 imm^{16} sltrd, rs, rt $rd=(rsop^6 = 0rs^5rt^5rd^500x2aslturd, rs, rtrd=(rsop^6 = 0rs^5rt^5rd^500x2b$				op	= UX		0			Imm	= 10	
beq rs, rt, label branch if (rs == rt) op6 = 4 rs5 rt5 imm16 bne rs, rt, label branch if (rs != rt) op6 = 5 rs5 rt5 imm16 blez rs, label branch if (rs <= 0) op6 = 6 rs5 0 imm16 blez rs, label branch if (rs <= 0) op6 = 6 rs5 0 imm16 bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm16 bgtz rs, label branch if (rs < 0) op6 = 7 rs5 0 imm16 bltz rs, label branch if (rs < 0) op6 = 1 rs5 0 imm16 bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16 bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16 bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16 bgez rs, label branch if (rs>=0) op6 = 0 rs5 rd5 0 0x2a slt rd, rs,	Inst	ruction	Meaning					For	mat			
bne rs, rt, label branch if (rs != rt) $op^6 = 5$ rs^5 rt^5 imm^{16} blez rs, label branch if (rs <= 0)	j	label	jump to label		op6	= 2			imm	26		
blez rs, label branch if (rs<=0) op6 = 6 rs5 0 imm ¹⁶ bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm ¹⁶ bltz rs, label branch if (rs < 0)	beq	rs, rt, label	branch if (rs ==	rt)	op ⁶	= 4	rs ⁵	rt ⁵		imm ¹⁰	6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	bne	rs, rt, label	branch if (rs !=	rt)	op ⁶	= 5	rs ⁵	rt ⁵		imm ¹⁰	6	
bitzrs, labelbranch if (rs < 0) $op^6 = 1$ rs^5 0 imm^{16} bgezrs, labelbranch if (rs>=0) $op^6 = 1$ rs^5 1 imm^{16} InstructionMeaningFormatsltrd, rs, rt $rd=(rsop^6 = 0rs^5rt^5rd^500x2aslturd, rs, rtrd=(rsop^6 = 0rs^5rt^5rd^500x2b$	blez	rs, label	branch if (rs<=0))	op ⁶	= 6	rs ⁵	0		imm ¹⁰	6	
bgez rs, labelbranch if (rs>=0) $op^6 = 1$ rs^5 1 imm^{16} InstructionMeaningFormatslt rd, rs, rt $rd=(rsop^6 = 0rs^5rt^5rd^500x2asltu rd, rs, rtrd=(rsop^6 = 0rs^5rt^5rd^500x2b$	bgtz	rs, label	branch if (rs > 0))	op ⁶	= 7	rs ⁵	0		imm ¹⁰	6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	bltz	rs, label	branch if (rs < 0))	op ⁶	= 1	rs ⁵	0		imm ¹⁰	6	
sltrd, rs, rtrd=(rs <rt?1:0)< th="">$op^6 = 0$$rs^5$$rt^5$$rd^5$0$0x2a$slturd, rs, rtrd=(rs<rt?1:0)< td="">$op^6 = 0$$rs^5$$rt^5$$rd^5$0$0x2b$</rt?1:0)<></rt?1:0)<>	bgez	z rs, label	branch if (rs>=0	D) op ⁶ = 1 rs ⁵ 1					imm ¹⁶			
sltrd, rs, rtrd=(rs <rt?1:0)< th="">$op^6 = 0$$rs^5$$rt^5$$rd^5$0$0x2a$slturd, rs, rtrd=(rs<rt?1:0)< td="">$op^6 = 0$$rs^5$$rt^5$$rd^5$0$0x2b$</rt?1:0)<></rt?1:0)<>	Inst	ruction	Meaning					For	mat			
sltu rd, rs, rt rd=(rs <rt?1:0) op<sup="">6 = 0 rs⁵ rt⁵ rd⁵ 0 0x2b</rt?1:0)>))	op ⁶	= 0	rs ⁵		_	0	0x2a	
elti rt re imm 16 rt=(re <imm<math>21:0) Ove re5 rt5 imm16</imm<math>	sltu						rs ⁵	rt ⁵	rd ⁵	0	0x2b	
$ s_1 s_2 s_3 s_1 s_1 s_1 s_1 s_2 s_3 s_1 s_1 $	slti	rt, rs, imm ¹⁶	rt=(rs <imm?1< td=""><td colspan="5">n?1:0) 0xa rs⁵ rt⁵ imm¹⁶</td><td>6</td></imm?1<>	n?1:0) 0xa rs ⁵ rt ⁵ imm ¹⁶					6			
sltiu rt, rs, imm ¹⁶ rt=(rs <imm?1:0) 0xb="" rs<sup="">5 rt⁵ imm¹⁶</imm?1:0)>	sltiu	rt, rs, imm ¹⁶	rt=(rs <imm?1< td=""><td>:0)</td><td>0</td><td>xb</td><td>rs⁵</td><td>rt5</td><td></td><td>imm¹</td><td>6</td></imm?1<>	:0)	0	xb	rs ⁵	rt5		imm ¹	6	

Instruction	Meaning			I-Typ	e Forr	nat	
lb rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	0 rs	⁵ rt	5	imn	n ¹⁶
Ih rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	1 rs	⁵ rt	5	imn	n ¹⁶
lw rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	3 rs	⁵ rt	5	imn	n ¹⁶
Ibu rt, imm16(rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	4 rs	⁵ rt	5	imn	n ¹⁶
Ihu rt, imm16(rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	5 rs	⁵ rt	5	imn	n ¹⁶
sb rt, imm16(rs)	MEM[rs+imm ¹⁶]	= rt 0x2	8 rs	⁵ rt	5	imn	n ¹⁶
sh rt, imm16(rs)	MEM[rs+imm ¹⁶]	= rt 0x2	9 rs	⁵ rt	5	imn	n ¹⁶
sw rt, imm16(rs)	MEM[rs+imm ¹⁶]	= rt 0x2	b rs	⁵ rt	5	imn	n ¹⁶
Instruction	Meaning			For	mat		
jal label S	\$31=PC+4, jump	op ⁶ = 3			_imm ²	26	
jr Rs	PC = Rs	op ⁶ = 0	rs ⁵	0	0	0	8
jalr Rd, Rs F	d=PC+4, PC=Rs	op ⁶ = 0	rs ⁵	0	rd ⁵	0	9
Instruction	Meaning			For	mat		
mult Rs, Rt	Hi, Lo = <u>Rs</u> × <u>Rt</u>	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x18
multu Rs, Rt	Hi, Lo = <u>Rs</u> × <u>Rt</u>	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x19
mul Rd, Rs, Rt	Rd = <u>Rs</u> × <u>Rt</u>	0x1c	Rs⁵	Rt⁵	Rd⁵	0	0x02
div <u>Rs</u> , <u>Rt</u>	Hi, Lo = Rs / Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x1a
divu Rs, Rt	Hi, Lo = Rs / Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x1b
mfhi Rd	Rd = Hi	op ⁶ = 0	0	0	Rd⁵	0	0x10
mflo Rd	Rd = Lo	op ⁶ = 0	0	0	Rd⁵	0	0x12