
Prepared by Dr. Muhamed Mudawar Page 1 of 8

ICS 233 - Computer Architecture
& Assembly Language

Exam II – Fall 2007

Saturday, December 8, 2007

7:00 pm – 9:00 pm

Computer Engineering Department
College of Computer Sciences & Engineering
King Fahd University of Petroleum & Minerals

Student Name: SOLUTION

Student ID:

Q1 / 15 Q2 / 15
Q3 / 25 Q4 / 20
Q5 / 25

Total / 100

Important Reminder on Academic Honesty
Using unauthorized information or notes on an exam, peeking at others work, or
altering graded exams to claim more credit are severe violations of academic
honesty. Detected cases will receive a failing grade in the course.

 Page 2 of 8
Q1. (10 pts) Using the refined multiplication hardware, show the unsigned multiplication of:

 Multiplicand = 01101101 by Multiplier = 10110110

 The result of the multiplication should be a 16 bit unsigned number in HI and LO
registers. Eight iterations are required. Show your steps.

Iteration Multiplicand Carry HI LO

 0: Initialize 01101101 00000000 10110110

 1: Shift right 00000000 01011011

 2: LO[0] = 1 ADD 0 01101101 01011011

 2: Shift right 00110110 10101101

 3: LO[0] = 1 ADD 0 10100011 10101101

 3: Shift right 01010001 11010110

 4: Shift right 00101000 11101011

 5: LO[0] = 1 ADD 0 10010101 11101011

 5: Shift right 01001010 11110101

 6: LO[0] = 1 ADD 0 10110111 11110101

 6: Shift right 01011011 11111010

 7: Shift right 00101101 11111101

 8: LO[0] = 1 ADD 0 10011010 11111101

 8: Shift right 01001101 01111110

 Check:

 Multiplicand = 011011012 = 109

 Multiplier = 101101102 = 182

 Product = 19838 (decimal) = 01001101 01111110 (binary)

b) (5 pts) What is the decimal value of the following floating-point number?

 1 10001101 10101000000000000000000 (binary)

 Sign = negative

 Exponent value = 100011012 – Bias = 141 – 127 = 14

 Decimal Value = -1.101012 × 214 = -1.65625 × 214 = -27136

 Page 3 of 8

Q2. (10 pts) Using the refined division hardware, show the unsigned division of:

 Dividend = 11011001 by Divisor = 00001010

 The result of the division should be stored in the Remainder and Quotient registers.
Eight iterations are required. Show your steps.

Iteration Remainder Quotient Divisor Difference

 0: Initialize 00000000 11011001 00001010

 1: SLL, Diff 00000001 10110010 00001010 < 0

 2: SLL, Diff 00000011 01100100 00001010 < 0

 3: SLL, Diff 00000110 11001000 00001010 < 0

 4: SLL, Diff 00001101 10010000 00001010 00000011

 4: Rem = Diff 00000011 10010001

 5: SLL, Diff 00000111 00100010 00001010 < 0

 6: SLL, Diff 00001110 01000100 00001010 00000100

 6: Rem = Diff 00000100 01000101

 7: SLL, Diff 00001000 10001010 00001010 < 0

 8: SLL, Diff 00010001 00010100 00001010 00000111

 8: Rem = Diff 00000111 00010101

 Check:

 Dividend = 110110012 = 217 (unsigned)

 Divisor = 000010102 = 10

 Quotient = 000101012 = 21 and Remainder = 000001112 = 7

b) (5 pts) Show the Double precision IEEE 754 representation for: -0.05

 0.05 * 2 = 0.1
 0.1 * 2 = 0.2
 0.2 * 2 = 0.4
 0.4 * 2 = 0.8
 0.8 * 2 = 1.6
 0.6 * 2 = 1.2
 0.2 * 2 = 0.4

 Double Precision Representation:

 1 01111111010

 1001100110011001100110011001100110011001100110011010 (rounded)

0.05 = 0.00001100110012 = 1.100110012 × 2-5
Exponent = -5 + 1023 = 1018 = 011111110102

 Page 4 of 8

Q3. Given x = 1 10000101 101100000000000000000012
and y = 1 01111111 010000000000000110000002
represent single precision floating-point numbers. Perform the following operations
showing all the intermediate steps and final result in binary. Round to the nearest even.

a) (12 pts) x + y

 Exponent Value(x) = 100001012 – bias = 133 – 127 = 6
 Exponent Value(y) = 011111112 – bias = 127 – 127 = 0

 - 1.101 1000 0000 0000 0000 00012 × 26

 - 1.010 0000 0000 0000 1100 00002 × 20

 - 1.101 1000 0000 0000 0000 00012 × 26

 - 0.000 0010 1000 0000 0000 0011 0000002 × 26 (shift)

 - 1.101 1010 1000 0000 0000 0100 0000002 × 26 (add)

 - 1.101 1010 1000 0000 0000 0100 × 26 (rounded)

 Result = 1 10000101 10110101000000000000100

 Page 5 of 8
Q3. b) (13 pts) x × y

 Biased exponent = 100001012 + 011111112 – 127 = 100001012
 Result sign = 0 (positive)

 1.101100000000000000000012

 × 1.010000000000000110000002

 110110000000000000000001

 110110000000000000000001

 110110000000000000000001

 1.10110000000000000000001

 10.0001110000000010100010101000000000000011

 Normalize and adjust exponent:

 1.00001110000000010100010 1 010000000000000112

 Biased exponent = 100001012 + 1 = 100001102

 Round to nearest even:

 Round bit = 1, Sticky bit = 1 (OR of remaining bits)

 Rounded Significand = 1.000011100000000101000102 + 1

 = 1.000011100000000101000112

 Product = 0 10000110 000011100000000101000112

 Page 6 of 8
Q4. (20 pts) A program, being executed on a processor, has the following instructions mix:

Operation Frequency Clock cycles per instruction
ALU 40 % 2
Load 20 % 10
Store 15 % 4
Branches 25 % 3

a) (3 pts) Compute the average clock cycles per instruction

 Average CPIa = 0.4*2 + 0.2*10 + 0.15*4 + 0.25*3 = 4.15

b) (6 pts) Compute the percent of execution time spent by each class of instructions

Operation Frequency CPI CPI * Frequency % Execution Time
ALU 40 % 2 0.8 0.8 / 4.15 = 19.3%
Load 20 % 10 2.0 2.0 / 4.15 = 48.2%
Store 15 % 4 0.6 0.6 / 4.15 = 14.4%
Branches 25 % 3 0.75 0.75 / 4.15 = 18.1%

c) (6 pts) A designer wants to improve the performance. He designs a new execution unit

that makes 80% of ALU operations take only 1 cycle to execute. The other 20% of ALU
operations will still take 2 cycles to execute. The designer also wants to improve the
execution of the memory access instructions. He does it in a way that 95% of the load
instructions take only 2 cycles to execute, while the remaining 5% of the load
instructions take 10 cycles to execute per load. He also improves the store instructions
in such a way that each store instruction takes 2 cycles to execute.

Compute the new average cycles per instruction

 Average CPIc = 0.8*0.4*1 + 0.2*0.4*2 +
 0.2*0.95*2 + 0.2*0.05*10 +
 0.15*2 + 0.25*3 = 2.01

d) (2 pts) What is the speedup factor by which the performance has improved in part c?

 Speedup = 4.15 / 2.01 = 2.06 (I-count & clock are the same)

e) (3 pts) The designer decides to improve the clock speed in such a way to triple the

overall performance of the original CPU specified in part a.

 By what factor should the clock rate be improved if the designer uses the design

specified in part c?

 Speedup = (CPIa / CPIc) * (Clock Ratec/Clock Ratea)

 Speedup = 3 = (4.15/2.01) * (Clock Ratec/Clock Ratea)

 Clock should be faster by 3/2.06 = 1.45 (45% faster)

 Page 7 of 8

Q5. (25 pts) The following code fragment processes two double-precision floating-point
arrays A and B, and produces an important result in register $f0. Each array consists of
10000 double words. The base addresses of the arrays A and B are stored in $a0 and
$a1 respectively.

 ori $t0, $zero, 10000
 sub.d $f0, $f0, $f0

loop: ldc1 $f2, 0($a0)
 ldc1 $f4, 0($a1)
 mul.d $f6, $f2, $f4
 add.d $f0, $f0, $f6
 addi $a0, $a0, 8
 addi $a1, $a1, 8
 addi $t0, $t0, -1
 bne $t0, $zero, loop

a) (6 pts) Write the code in a high-level language, and describe what is produced in $f0.

 for (i=0; i<10000, i++) sum = sum + A[i] * B[i];
 Compute the dot product and return sum in $f0.

c) (5 pts) Count the total number of instructions executed by all the iterations (including
those executed outside the loop).
Instruction Count = 2 + 10000 * 8 = 80002

 Page 8 of 8

d) (14 pts) Assume that the code is run on a machine with a 2 GHz clock that requires the
following number of cycles for each instruction:

Instruction Cycles
addi, ori 1

ldc1 3

add.d, sub.d 5

mul.d 6

bne 2

 (7 pts) How many cycles does it take to execute the above code?

Clock cycles = 1 (ori) + 5 (sub.d) + 10000 * (2*3 (ldc1) +
6 (mul.d) + 5 (add.d) + 3*1 (addi) + 2 (bne))

= 6 + 10000 * 22 = 220006 cycles

 (3 pts) How many second to execute the above code?

Execution time = cycles / clock rate = 220006/2 nsec

= 110003 nsec = 110 usec = 0.11 msec = 0.00011 seconds

 (2 pts) What is the average CPI for the above code?

Average CPI = Clock Cycles / Instruction-Count =

Average CPI = 220006 / 80002 = 2.75

 (2 pts) What is the MIPS rate for the above code?

MIPS rate = 80002 / 110 usec = 727.3 MIPS

