
Prepared by Dr. Muhamed Mudawar and Dr. Marwan Abu-Amara

COE 301 / ICS 233
Computer Organization

Exam 2 – Spring 2017

Saturday, April 29, 2017

6:30 PM – 8:30 PM

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name:

Student ID:

Section:

Q1 / 15 Q2 / 15

Q3 / 15 Q4 / 25

Q5 / 15 Q6 / 20

Total / 105

Important Reminder on Academic Honesty
Using unauthorized information or notes on an exam, peeking at others work, or
altering graded exams to claim more credit are severe violations of academic
honesty. Detected cases will receive a failing grade in the course.

 Page 2 of 11

Question 1: Writing a Recursive Function in MIPS

(15 pts) Write a MIPS assembly-language function sum that receives two arguments: list[]
and length, passed in $a0 and $a1, respectively, computes recursively and returns the sum
of the array elements in $f0. list[] is the address of an array of single-precision floats.
The result of the function is a single-precision float.

float sum (float list[], int length) {
 if (length == 0) return 0;
 else return (list[0] + sum(&list[1], length-1));
}

 Page 3 of 11

Question 2: Greatest Common Divisor

(15 pts) The greatest common divisor of two integers a and b can be computed as follows:

gcd(a, 0) = a

gcd(a, b) = gcd(b, a % b) where % is the remainder operator

For example,

gcd(30, 18) = gcd(18, 30%18) =

gcd(18, 12) = gcd(12, 18%12) =

gcd(12, 6) = gcd(6, 12%6) = gcd(6, 0) = 6

Write a MIPS assembly-language function that receives two integer arguments in $a0 and

$a1, computes and returns the greatest common divisor in $v0. Hint: use integer division and
remainder in your computation, and write a loop to repeatedly compute the gcd.

 Page 4 of 11

Question 3: Sequential Signed Integer Multiplication

(15 pts) Given that the Multiplicand = 10100101 and the Multiplier = 10101101 are
signed 2’s complement numbers, show the signed multiplication of the Multiplicand by the
Multiplier. The result of the multiplication should be a 16-bit signed number in HI and LO
registers. Show the steps of your work for a full mark.

Iteration Multiplicand Sign Product = HI, LO

0 Initialize

1

2

3

4

5

6

7

8

 Page 5 of 11

Question 4: Floating-Point Numbers and Arithmetic

a) (4 pts) Find the decimal value of the following single-precision float:

S Exponent Fraction

1 1000 1110 000 0100 1100 0000 0110 0000

b) (4 pts) Find the decimal value of the following single-precision float:

S Exponent Fraction

0 0000 0000 010 1100 0001 0000 0000 0000

c) (4 pts) Find the IEEE 754 single-precision representation of –126.2, rounded to the

nearest even.

d) (4 bits) Normalize and Round the given single-precision number with given GRS

(Guard, Round, and Sticky) bits using the following four rounding modes. Show the final
normalized number and its exponent:
 GRS
-0.111 1111 1111 1111 1111 1111 110 × 2-12

Round towards Zero:

Round towards +Infinity:

Round towards -Infinity:

Round towards Nearest Even:

 Page 6 of 11

e) (9 pts) Given that A and B are single-precision floats, compute the difference A–B. Use
rounding to nearest even. Perform the operation using guard, round and sticky bits.

A = +1.010 1001 1111 1010 0000 1101 × 10+3

B = +1.001 1111 1010 0000 1110 0100 × 10-1

 Page 7 of 11

Question 5: Register File

(15 pts) Draw a register file having 7 registers only (R1 to R7) with two register read ports
(Ra and Rb) and one register write port (Rw). R0 should be hardwired to zero and cannot be
written. The register file should have two output data busses (BusA and BusB) and one input
data bus (BusW). A control signal (RegWrite) should be used to enable the writing of the
register file at the edge of the Clock signal.

 Page 8 of 11

Question 6: Single-Cycle Datapath and Control

(20 pts) Consider the single-cycle datapath and control given below that implements a subset
of the MIPS instruction set:

The PC control logic can be described as follows:

if (Op == J) PCSrc = 1;
else if ((Op == BEQ && Zero) || (Op == BNE && ~Zero)) PCSrc = 2;
else PCSrc = 0;

We wish to add the following instructions to the MIPS single-cycle datapath:

Instruction Meaning Format

 jalr Rd, Rs Rd = PC+4; PC = Rs Op = 0 Rs 0 Rd 0 f = 9

 movz Rd, Rs, Rt if (Rt==0) Rd = Rs Op = 0 Rs Rt Rd 0 f = 10

 lwr Rd, Rs, Rt Rd = MEM[Rs+Rt] Op = 0 Rs Rt Rd 0 f = 48

Branch, Jump = 00 � PCSrc = 0

Branch, Jump = 01 � PCSrc = 1

Branch, Jump = 10 � PCSrc = 2

 Page 9 of 11

a) (10 pts) Redraw the single-cycle datapath. Show and describe any necessary
modifications to the datapath and control signals needed for the implementation of the
above three instructions.

b) (10 pts) Draw a table showing the values of ALL control signals needed for the
implementation of the above three instructions. Describe any changes in the main control
and PC control needed for the implementation of the above three instructions.

 Page 10 of 11

Additional Page if needed

Prepared by Dr. Muhamed Mudawar and Dr. Marwan Abu-Amara

Instruction Meaning Format
add.s fd, fs, ft (fd) = (fs) + (ft) 0x11 0 ft5 fs5 fd5 0

add.d fd, fs, ft (fd) = (fs) + (ft) 0x11 1 ft5 fs5 fd5 0

sub.s fd, fs, ft (fd) = (fs) – (ft) 0x11 0 ft5 fs5 fd5 1

sub.d fd, fs, ft (fd) = (fs) – (ft) 0x11 1 ft5 fs5 fd5 1

mul.s fd, fs, ft (fd) = (fs) × (ft) 0x11 0 ft5 fs5 fd5 2

mul.d fd, fs, ft (fd) = (fs) × (ft) 0x11 1 ft5 fs5 fd5 2

div.s fd, fs, ft (fd) = (fs) / (ft) 0x11 0 ft5 fs5 fd5 3

div.d fd, fs, ft (fd) = (fs) / (ft) 0x11 1 ft5 fs5 fd5 3

sqrt.s fd, fs (fd) = sqrt (fs) 0x11 0 0 fs5 fd5 4

sqrt.d fd, fs (fd) = sqrt (fs) 0x11 1 0 fs5 fd5 4

abs.s fd, fs (fd) = abs (fs) 0x11 0 0 fs5 fd5 5

abs.d fd, fs (fd) = abs (fs) 0x11 1 0 fs5 fd5 5

neg.s fd, fs (fd) = – (fs) 0x11 0 0 fs5 fd5 7

neg.d fd, fs (fd) = – (fs) 0x11 1 0 fs5 fd5 7

Instruction Meaning Format
lwc1 $f2, 40($t0) ($f2) = Mem[($t0)+40] 0x31 $t0 $f2 im16 = 40
ldc1 $f2, 40($t0) ($f3$f2) = Mem[($t0)+40] 0x35 $t0 $f2 im16 = 40
swc1 $f2, 40($t0) Mem[($t0)+40] = ($f2) 0x39 $t0 $f2 im16 = 40
sdc1 $f2, 40($t0) Mem[($t0)+40] = ($f3$f2) 0x3d $t0 $f2 im16 = 40

Instruction Meaning Format
mfc1 $t0, $f2 ($t0) = ($f2) 0x11 0 $t0 $f2 0 0

mtc1 $t0, $f2 ($f2) = ($t0) 0x11 4 $t0 $f2 0 0

mov.s $f4, $f2 ($f4) = ($f2) 0x11 0 0 $f2 $f4 6

mov.d $f4, $f2 ($f5$f4)=($f3$f2) 0x11 1 0 $f2 $f4 6

Instruction Meaning Format
cvt.s.w fd, fs to single from integer 0x11 0 0 fs5 fd5 0x20
cvt.s.d fd, fs to single from double 0x11 1 0 fs5 fd5 0x20
cvt.d.w fd, fs to double from integer 0x11 0 0 fs5 fd5 0x21
cvt.d.s fd, fs to double from single 0x11 1 0 fs5 fd5 0x21
cvt.w.s fd, fs to integer from single 0x11 0 0 fs5 fd5 0x24
cvt.w.d fd, fs to integer from double 0x11 1 0 fs5 fd5 0x24

Instruction Meaning Format
c.eq.s fs, ft cflag = ((fs) == (ft)) 0x11 0 ft5 fs5 0 0x32
c.eq.d fs, ft cflag = ((fs) == (ft)) 0x11 1 ft5 fs5 0 0x32
c.lt.s fs, ft cflag = ((fs) <= (ft)) 0x11 0 ft5 fs5 0 0x3c
c.lt.d fs, ft cflag = ((fs) <= (ft)) 0x11 1 ft5 fs5 0 0x3c
c.le.s fs, ft cflag = ((fs) <= (ft)) 0x11 0 ft5 fs5 0 0x3e
c.le.d fs, ft cflag = ((fs) <= (ft)) 0x11 1 ft5 fs5 0 0x3e
bc1f Label branch if (cflag == 0) 0x11 8 0 im16

bc1t Label branch if (cflag == 1) 0x11 8 1 im16

