
Prepared by Dr. Muhamed Mudawar and Dr. Marwan Abu-Amara

COE 301 / ICS 233
Computer Organization

Exam 1 – Spring 2017

Saturday, March 18, 2017

10 AM – 12 Noon

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name: SOLUTION

Student ID:

Section:

Q1 / 20 Q2 / 15

Q3 / 15 Q4 / 15

Q5 / 20 Q6 / 20

Total / 105

Important Reminder on Academic Honesty
Using unauthorized information or notes on an exam, peeking at others work, or
altering graded exams to claim more credit are severe violations of academic
honesty. Detected cases will receive a failing grade in the course.

 Page 2 of 9

Question 1: Fill-in the Blanks

a) (2 pts) Imagine that you are working for a company that fabricates a certain IC chip. The

cost per wafer is $3000, and each wafer has 2000 dies. If the cost of a good die is $2.50,

then the yield of this manufacturing process is ($3000/$2.50)/2000 = 0.6 or 60%.

b) (2 pts) Given that the instruction j NEXT is at address 0x004000F4, and the label NEXT

is at address 0x00402AEC. Then, the 26-bit immediate stored in the jump instruction for

the label NEXT is 0x00402AEC >> 2 = 0x0100ABB.

c) (3 pts) Given the following data definitions, the address of the first variable X is given at

0x10010000 (hexadecimal), the hexadecimal addresses for Y, Z, and S will be:

.data
X: .half 1, 2, 3
Y: .byte 'A', 'B', 'C'
Z: .word 7, 8, 9
.ALIGN 3
S: .asciiz "STRING"

Address of Y = 0x10010006

Address of Z = 0x1001000C

Address of S = 0x10010018

d) (3 pts) Show the MIPS assembly language instruction that is equivalent to the following

machine language instruction. Provide the immediate value in decimal. The MIPS

Reference data sheet is attached at the end.

Machine language instruction MIPS assembly language instruction

0011 0001 0001 0001 1000 0111 0110 0101
Op=ANDI, Rs=$8, Rt=$17, I=34661

ANDI $s1, $t0, 34661

 Page 3 of 9

e) (5 pts) Each square in the table shown below represents one byte in memory and each

row stores 8 bytes in memory. Starting at address 0×10010000 in the data segment,

show the byte content in memory in hexadecimal for the following data definitions. If a

byte is not used (or uninitialized) then leave it empty. Fill only the bytes that are

initialized. For words and half words, the little endian byte ordering should be used.

.DATA
.WORD -2
.HALF 0×1FFF
.ALIGN 2
.BYTE 11:3
.ALIGN 4
.BYTE 13, -1

Address +0 +1 +2 +3 +4 +5 +6 +7

0×10010000 0xFE 0xFF 0xFF 0xFF 0xFF 0x1F

0×10010008 0x0B 0x0B 0x0B

0×10010010 0x0D 0xFF

0×10010018

f) (5 pts) Given the following contents of memory, where each square represents only one

byte in memory, show the values of registers $t0 thru $t4 in hexadecimal after

executing each of the following MIPS assembly language instructions. The little endian

byte ordering should be used. Assume $s0 = 0×10010020.

Address +0 +1 +2 +3 +4 +5 +6 +7

0×10010020 0xFA 0x20 0x10 0xC0 0xB0 0x5F 0x94

lw $t0, 0($s0) $t0 = 0xC01020FA

lh $t1, 2($s0) $t1 = 0xFFFFC010

lhu $t2, 4($s0) $t2 = 0x00005FB0

lb $t3, 5($s0) $t3 = 0x0000005F

lbu $t4, 6($s0) $t4 = 0x00000094

 Page 4 of 9

Question 2: Pseudo-Instructions

For each of the following pseudo-instructions, produce a minimal sequence of basic
MIPS instructions to accomplish the same thing. You may use the $at register only as a
temporary register.

a) abs $t1, $t2 # absolute value (4 pts)

addu $t1, $t2, $zero # $t1 = $t2
bgez $t2, done

subu $t1, $zero, $t2 # $t1 = -$t2
done:

Solution 2: No branch
sra $at, $t2, 31 # $at = 0 or -1 (0xFFFFFFFF)
xor $t1, $t2, $at # $t1 = $t2 or 1’s complement
subu $t1, $t1, $at # $t1 = $t2 or 2’s complement

b) addiu $t1, $t2, 0x1234abcd # 32-bit constant (4 pts)

lui $at, $0x1234 # $at = 0x12340000
ori $at, $at, $0xabcd # $at = 0x1234abcd

 addu $t1, $t2, $at

c) bgt $t1, 100, Label # branch if greater than 100 (3 pts)

ori $at, $zero, 100

 slt $at, $at, $t1
 bne $at, $zero, Label

 # Better solution
 slti $at, $t1, 101
 beq $at, $zero, Label

d) ror $t1, $t2, 15 # rotate right value of $t2 15 bits (4 pts)

sll $t1, $t2, 17
srl $at, $t2, 15
or $t1, $t1, $at

rotate right

 Page 5 of 9

Question 3: Trace the Execution of the following Code

a) (7 pts) Given that Array is defined as shown below, determine the content of registers

$v0 and $v1 after executing the following code. Explain what the program does.

Array: .word 15, -19, 17, 20, -10, 12, 100, -5

 la $a0, Array # $a0 = 0x10010000
 addi $a1, $a0, 28

 move $v0, $a0
 lw $v1, 0($v0)
 move $t0, $a0
loop: addi $t0, $t0, 4
 lw $t1, 0($t0)
 bge $t1, $v1, skip
 move $v0, $t0
 move $v1, $t1
skip: bne $t0, $a1, loop

$v0 = 0x10010004 (address of minimum element)
$v1 = -19 (minimum value)

 The program is determining the minimum element in the array and its address in

memory.

b) (8 pts) Given that Array is defined as shown below, determine the content of Array

after executing the following code. Explain what the program does.

Array: .half 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

 la $a0, Array
 li $a1, 6

 move $t0, $a0
 addi $t1, $a0, 12

loop: lh $t3, ($t0)
 lh $t4, ($t1)
 sh $t3, ($t1)
 sh $t4, ($t0)
 addi $t0, $t0, 2
 addi $t1, $t1, 2
 addi $a1, $a1, -1
 bne $a1, $zero, loop

New Array Content:

 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6

 The program is swapping the first six array elements with the last six

 Page 6 of 9

Question 4: Writing MIPS code

(15 pts) Write a MIPS loop that converts a string to lower case. The address of the string

exists in register $a0. The string is terminated with a null character. The string should be

read, converted, and stored in memory. Check each character if it is an upper case letter

(range 'A' to 'Z') before converting it to lower case. Recall that 'A' = 0x41 and 'a' = 0x61.

move $t0, $a0 # $t0 = string pointer

loop: lb $t1, 0($t0) # load $t1 = character

 blt $t1, 'A', skip # not a capital letter

 bgt $t1, 'Z', skip # not a capital letter

 addi $t1, $t1, 0x20 # convert to lowercase

 sb $t1, 0($t0) # store lowercase letter

skip: addi $t0, $t0, 1 # advance pointer

 bne $t1, $zero, loop # loop if not null character

 Page 7 of 9

Question 5: Translating Nested Loops into MIPS Assembly Language

(20 pts) Translate the following nested loops into MIPS assembly language. Register $a0

stores the number n of elements in all arrays, $a1 = address of the array a[], $a2 = address

of the array b[], and $a3 = address of the array c[]. Each array element is a 32-bit signed

integer. Insert comments to clarify the meaning of instructions and the use of registers.

 for (i=0; i != n; i++) {

 int cnt = 0;

 for (j=0; j != n; j++) {

 if (a[i] == b[j]) cnt = cnt + 1;

 }

 c[i] = cnt;

 }

Solution:

 li $t0, 0 # $t0 = i = 0
for1: # outer for loop

 li $t1, 0 # cnt = 0
 li $t2, 0 # $t2 = j = 0
 lw $t3, 0($a1) # load $t3 = a[i]
 move $t4, $a2 # $t4 = address of b

for2: # inner for loop
 lw $t5, 0($t4) # load $t5 = b[j]
 bne $t3, $t5, skip # skip if a[i] != b[j]
 addiu $t1, $t1, 1 # cnt = cnt + 1
skip:
 addiu $t4, $t4, 4 # point to next b[j]

 addiu $t2, $t2, 1 # j++
 bne $t2, $a0, for2 # loop back if j!=n

 sw $t1, 0($a3) # store c[i] = cnt
 addiu $a1, $a1, 4 # point to next a[i]
 addiu $a3, $a3, 4 # point to next c[i]
 addiu $t0, $t0, 1 # i++
 bne $t0, $a0, for1 # loop back if i!=n

 Page 8 of 9

Question 6: The Transposition of a Matrix

(20 pts) Transposition is an important matrix operation. Given that matrix A is a square

matrix of integers with dimensions n×n, the transposition is accomplished by swapping

matrix element A[i][j] with element A[j][i], as shown in the following nested loops.

Given that register $a0=n, and register $a1 = address of matrix A, translate the following

nested loops into MIPS assembly language code.

 for (i=0; i != n; i++) {

 for (j=i+1; j != n; j++) {

 temp1 = A[i][j];

 temp2 = A[j][i];

 A[i][j] = temp2;

 A[j][i] = temp1;

 }

 }

Solution:

 li $t0, 0 # $t0 = i = 0
 addiu $t9, $a0, -1 # $t9 = n-1 (iterates outer for)

for1: # outer for loop
 addiu $t1, $t0, 1 # $t1 = j = i+1
for2: # inner for loop
 mul $t2, $t0, $a0 # $t2 = i*n
 addu $t2, $t2, $t1 # $t2 = i*n + j
 sll $t2, $t2, 2 # $t2 = (i*n + j) * 4
 addu $t2, $a1, $t2 # $t2 = &A[i][j]

 mul $t3, $t1, $a0 # $t3 = j*n
 addu $t3, $t3, $t0 # $t3 = j*n + i
 sll $t3, $t3, 2 # $t3 = (j*n + i) * 4

 addu $t3, $a1, $t3 # $t3 = &A[j][i]

 lw $t4, 0($t2) # $t4 = A[i][j]
 lw $t5, 0($t3) # $t5 = A[j][i]
 sw $t5, 0($t2) # A[i][j] = $t5
 sw $t4, 0($t3) # A[j][i] = $t4

 addiu $t1, $t1, 1 # j++
 bne $t1, $a0, for2 # loop back if j!=n

 addiu $t0, $t0, 1 # i++

 bne $t0, $t9, for1 # loop back if i!=(n-1)

Outer for loop has only (n – 1) iterates, because when i
is (n – 1) the inner for loop will have zero iterates.

 Page 9 of 9

Better Solution: Faster Traversal of Matrix by Rows and by Columns

 li $t0, 0 # $t0 = i = 0
 sll $t7, $a0, 2 # $t7 = n*4 (bytes per row)
 addiu $t8, $t7, 4 # $t8 = n*4 + 4 (bytes)
 addiu $t9, $a0, -1 # $t9 = n-1 (iterates outer for)

for1: # outer for loop
 addiu $t1, $t0, 1 # $t1 = j = i+1
 addiu $t2, $a1, 4 # $t2 = &A[i][j]
 addu $t3, $a1, $t7 # $t3 = &A[j][i]

for2: # inner for loop
 lw $t4, 0($t2) # $t4 = A[i][j]

 lw $t5, 0($t3) # $t5 = A[j][i]
 sw $t5, 0($t2) # A[i][j] = $t5
 sw $t4, 0($t3) # A[j][i] = $t4

 addiu $t2, $t2, 4 # $t2 = &A[i][j] (by row)
 addu $t3, $t3, $t7 # $t3 = &A[j][i] (by column)

 addiu $t1, $t1, 1 # j++
 bne $t1, $a0, for2 # loop back if j!=n

 addu $a1, $a1, $t8 # $a1 = &A[i][i] (main diagonal)

 addiu $t0, $t0, 1 # i++
 bne $t0, $t9, for1 # loop back if i!=(n-1)

Smaller inner loop: 8 instructions per inner loop iterate versus 14 used in first solution.
No multiply instruction is used for address calculation in the second solution.

Any solution that works is acceptable.

