
 Page 1 of 9

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering
Computer Engineering Department

COE 301 COMPUTER ORGANIZATION
ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Term 151 (Fall 2015-2016)
Major Exam 1

Saturday Oct. 10, 2015

Time: 120 minutes, Total Pages: 9

Name:_KEY_________________________ ID:__________________ Section: _______

Notes:

• Do not open the exam book until instructed

• Answer all questions

• All steps must be shown

• Any assumptions made must be clearly stated

Question Max Points Score
Q1 35
Q2 25

Total 60

Dr. Aiman El-Maleh
Dr. Mayez Al-Muhammad

 Page 2 of 9

 [35 Points]

(Q1) Fill in the blank in each of the following questions:

(1) Assuming 12-bit unsigned representation, the binary number 1111 0000 1111 is
equal to the decimal number 3855.

(2) Assuming 12-bit signed 2`s complement representation, the hexadecimal number
FC0 is equal to the decimal number -64.

(2) Accessibility to hardware resources is an advantage of programming in assembly
language.

(3) Code portability is an advantage of programming in high-level language.

(4) With a 36-bit address bus and 64-bit data bus, the maximum memory size
(assuming byte addressable memory) that can be accessed by a processor is
236=64 GByte and the maximum number of bytes that can be read or written in a
single cycle is 8 Bytes.

(5) The bandwidth mismatch between the speed of processor and the speed of main-
memory is alleviated by using cache memory.

(6) The advantage of dynamic RAM over static RAM is that it is dense and cheap but
the disadvantage is that is slow as it needs refreshing.

(7) The instruction set architecture of a processor consists of the instructions set, the
programmer accessible registers and memory.

(8) Assuming that the CPU has just read a 32-bit MIPS instruction from the address
0x00400008. Then, the address of the next instruction that this CPU is going to
read is 0x00400008+4=0x0040000c.

 Page 3 of 9

(9) Given a magnetic disk with the following properties:

• Time of one rotation is 8 ms
• Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

The average time to access a block of 20 consecutive sectors is 8 + 4 +
8*20/200=12.8 ms.

(10) The pseudo instruction neg $s2, $s1 ($s2 is computed as the negative value of
$s1) is implemented by the following minimum MIPS instructions:

subu $s2, $0, $s1

(11) The pseudo instruction ble $s2, $s1, Next is implemented by the following
minimum MIPS instructions:

slt $at, $s1, $s2
 beq $at, $0, Next

(12) The pseudo instruction rol $s0, $s0, 8 ($s0 is rotated to the left by 8 bits and
stored in $s0) is implemented by the following minimum MIPS instructions:

srl $at, $s0, 24
 sll $s0, $s0, 8
 or $s0, $s0, $at

(13) Assuming that $a0 contains an Alphabetic character, the instruction andi $a0,
$a0, 0xdf will guarantee that the character in $a0 is an upper case character. Note
that the ASCII code of character ‘A’ is 0x41 while that of character ‘a’ is 0x61.

(14) Assume that the instruction bne $t0, $t1, NEXT is at address 0x00400020 in
the text segment, and the label NEXT is at address 0x00400010. Then, the address
stored in the assembled instruction for the label NEXT is (0x00400010-
(0x00400020+4))/4=0xfffb.

 Page 4 of 9

(15) Assuming that variable Array is defined as shown below:

Array: .byte 1, 2, -3, 4

After executing the following sequence of instructions, the content of
the three registers is $t1=0xfffffffd, $t2=0x000004fd and
$t3=0x04fd0201.

la $t0, Array
lb $t1, 2($t0)
lh $t2, 2($t0)
lw $t3, 0($t0)

(16) Assuming the following data segment, and assuming that the first variable X is
given the address 0x10010000, then the addresses for variables Y and Z will be
0x10010002 and 0x10010008.

.data

X: .byte 1

Y: .half 2, 3

Z: .word 4

(17) To multiply the signed content of register $t0 by 127.75 without using
multiplications and division instructions, we use the following MIPS instructions:

sll $t1, $t0, 7
sra $t2, $t0, 2
subu $t0, $t1, $t2

(18) The condition for which the data stored in $t0 must satisfy in order for the
following MIPS fragment to branch to L1 is:

If bit 0 and bit 4 and bit 8 are all equal to 1 then branch to L1

ori $t1, $0, 0x111
and $t0, $t0, $t1
beq $t0, $t1, L1

(19) The content of register $t0 after executing the following code is
1+2+3+4=0xa:

li $s1, 0x4321
xor $t0, $t0, $t0

Next:
 andi $t1, $s1, 0xf
 add $t0, $t0, $t1
 srl $s1, $s1, 4
 bne $s1, $0, Next

 Page 5 of 9

[25 Points]

(Q2) Write separate MIPS assembly code fragments with minimum instructions to
implement each of the given requirements.

(i) [6 points] Given two arrays of words A and B with their base addresses stored in
registers $s0 and $s1, array size N is stored in $s2, and index i is stored $s3, write
the smallest MIPS assembly fragment for the following computation:

for (i=0; i<n; i++) if ((A[i]-B[i])*5 >=0) then A [i]= (A[i]-B[i])*5;

Solution:
 xor $s3, $s3, $s3 # i = 0
Loop: bge $s3, $s2, EndFor # End loop if i>=n
 lw $t0, 0($s0) # $t0 = A[i]
 lw $t1, 0($s1) # $t1 = B[i]
 sub $t0, $t0, $t1 # $t0= A[i] – B[i]
 sll $t1, $t0, 2 # $t1= (A[i] – B[i])*4
 add $t1, $t1, $t0 # $t1= (A[i] – B[i])*5
 bltz $t1, skip # do not update if (A[i] – B[i])*5) < 0
 sw $t1, 0($s0) # A[i] = (A[i] – B[i])*5
 Skip: addiu $s0, $s0, 4 # update pointer to A[i+1]
 addiu $s1, $s1, 4 # update pointer to B[i+1]
 addiu $s3, $s3, 1 # update pointer i
 J Loop
EndFor:

Grading: 2 pts for the For, 1 pt for the If, 2 pts for the expression, and 1 pt for the store.

(ii) [6 points] Given the following MPIS assembly fragment:

 bne $s1, $s2, exit
 bge $s2, $s3, exit
 addi $s4, $s4, 5
Exit:

Assume that variables a, b, c, and d are stored in registers $s1, $s2, $s3, and
$s4, respectively.

Fill in the Boolean expression in the following IF statement:

If (____________________________) then d=d +5;

Answer: if ((a == b)&&(b < c)) then d=d +5;

 Repeat the above question for the following MPIS assembly fragment:

 beq $s1, $s2, process
 bgt $s2, $s3, exit
 ble $s3, $s4, exit

 process: add $s4, $s4, $s1
 Exit:

 Page 6 of 9
Fill in the Boolean expression in the following IF statement:

If (_______________________________) then d=d +a;

Answer: if ((a ==b) || (b <= c) && (c > d)) then d=d +a;

(iii) [3 points] Write a MIPS assembly fragment for the following IF statement:

 if ([(a == b) || (c== d)] && (a < c)) then b = d ;

Assume that variables a, b, c, and d are stored into registers $s0, $s1, $s2, and
$s3, respectively.

 Answer:

bge $s0, $s2, exit
beq $s0,$s1, process
bne $s2, $s3, exit

process: Add $s1, $s3, $zero
Exit:

(iv) [5 points] Write a MIPS assembly fragment to count the number of occurrence of
alpha characters (can be lowercase or uppercase) in a null terminating string,
where the base address of the string is in register $s0 and the count is to be in $s1.

0 1 2 3 4 5 6 7 8 9 A B C D E F

2 space ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Answer:
 ori $t2,$zero, 0x41 #Ascii of char A in t2
 ori $t3,$zero, 0x5A #Ascii of char Z in t3
 xor $s1, $s1, $s1 # initialize count to zero
 move $t0, $s0 # $t0 points to first char of string
Loop: lb $t1, 0($t0) # load byte into $t1
 beq $t1, $zero, exit # Exit if null terminating char
 andi $t1, $t1, 0xDF # Convert to capital (if any)
 blt $t1, $t2, Skip # Skip if below 0x41 (not an alpha)
 bgt $t1, $t3, Skip # Skip if above 0x5A (not an alpha)
 addiu $s1, $s1, 1 # increment count

 Page 7 of 9
 Skip: addi $t0, $t0, 1 # Increment string ptr
 J Loop
 Exit:
Grading: -1 pt if both domains are tested.

(v) [5 points] Write the most optimized MIPS assembly fragment for the following
WHILE statement:

i = 0;
WHILE ((A[i] >= B[i]*2) && (i<N)) { A[i] = A[i]- B[i]; i = i+1; }

Where A and B are arrays of Bytes. The base address of arrays A and B are
stored into registers $s0 and $s1, respectively. The index i and count N are
stored into registers $s2 and $s3.

Answer:

 xor $s2, $s2, $s2 # index i = 0
 Loop: bge $s2, $s3, exit # exit if i >= N
 lb $t0, 0 ($s0) # $t0 = A[i] as byte
 lb $t1, 0 ($s1) # $t1 = B[i] as byte
 sll $t2, $t1, 1 # t2 =B[i]*2
 blt $t0,$t2, exit # exit if A[i] < B[i]*2
 sub $t0, $t0,$t1 # $t0= A[i]-B[i];
 sb $t0, 0 ($s0) # A[i] = A[i]-B[i];
 addiu $s2, $s2, 1 # i = i+1
 addiu $s0, $s0, 1 # update ptr to A[i+1]
 addiu $s1, $s1, 1 # update ptr to B[i+1]
 J Loop

 Exit:

 Page 8 of 9

MIPS Instructions:

 Page 9 of 9

