Page 1 of 9

King Fahd University of Petroleum and Minerals
College of Computer Science and Engineering
Computer Engineering Department

COE 301 COMPUTER ORGANIZATION
ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE
Term 151 (Fall 2015-201%
Major Exam 1
Saturday Oct. 10, 2015

Time: 120 minutes, Total Pages9

Name: KEY ID: Section:

Notes:
* Do not open the exam book until instructed

e Answer all questions
* All steps must be shown

* Any assumptions made must be clearly stated

Question Max Points Score
Q1 35
Q2 25
Total 60

Dr. Aiman El-Maleh
Dr. Mayez Al-Muhammad

Page 2 of 9

[35 Points]

(Q1) Fill in the blank in each of the following quesi®

(1) Assuming 12-bit unsigned representation, the bimanpber 1111 0000 1111 is
equal to the decimal number 3855.

(2) Assuming 12-bit signed 2's complement represemtatite hexadecimal number
FCO is equal to the decimal number -64.

(2) Accessibility to hardware resources is an advantdgrogramming in_ assembly
language.

(3) Code portability is an advantage of programmingigh-level language.

(4) With a 36-bit address bus and 64-bit data bus, Mffaximum memory size
(assuming byte addressable memory) that can besseuteby a processor is
2°°=64 GByte and the maximum number of bytes thatbearead or written in a
single cycle is 8 Bytes.

(5) The bandwidth mismatch between the speed of processl the speed of main-
memory is alleviated by using cache memory.

(6) The advantage of dynamic RAM over static RAM istihés dense and cheap but
the disadvantage is that is slow as it needs tafrgs

(7) The instruction set architecture of a processosists of the instructions set, the
programmer accessible registers and memory.

(8) Assuming that the CPU has just read a 32-bit Mi#Hruction from the address
0x00400008. Then, the address of the next instmdtiat this CPU is going to
read isOx00400008+4=0x0040000c.

Page 3 of 9

(9) Given a magnetic disk with the following properties

* Time of one rotation is 8 ms
* Average seek = 8 ms, Sector = 512 bytes, TrackO=s20tors

The average time to access a block of 20 consecséetors is 8 + 4 +
8*20/200=12.8 ms.

(10) The pseudo instructiomeg $s2, $s1 ($s2 is computed as the negative value of
$sl)is implemented by the following minimum MIPS ingttions:

subu $s2, $0, $s1

(11) The pseudo instructioble $s2, $s1, Next is implemented by the following
minimum MIPS instructions:

slt $at, $s1, $s2
beg $at, $0, Next

(12) The pseudo instructiorol $s0, $s0, 8 ($s0 is rotated to the left by 8 bits and
stored in $s0) is implemented by the following miom MIPS instructions:

srl $at, $s0, 24
sll $s0, $s0, 8
or $s0, $s0, $at

(13) Assuming that $a0 contains an Alphabetic charattierjnstructiorandi $a0,
$a0, Oxdf will guarantee that the character in $a0 is areugpse character. Note
that the ASCII code of character ‘A’ is 0x41 whileat of character ‘a’ is 0x61.

(14) Assume that the instructidme $t0, $t1, NEXT is at address 0x00400020 in
the text segment, and the label NEXT is at addde88400010. Then, the address
stored in the assembled instruction for the labd&tXN is (0x00400010-
(0x00400020+4))/4=0xfffb.

Page 4 of 9

(15) Assuming that variable Array is defined as showowe

Array: .byte 1, 2, -3, 4

After executing the following sequence of instrao8, the content of
the three registers is $t1=0xfffffffd, $t2=0x000004nd
$t3=0x04fd0201.

la $tO, Array
b $t1, 2($t0)
lh $t2, 2($t0)
lw $t3, 0($t0)

(16) Assuming the following data segment, and assunfiagthe first variable X is
given the addres8x10010000then the addresses for variables Y and Z will be
0x10010002and_0x10010008.

.data

X: byte 1
Y: half 2,3
Z: .word 4

(17) To multiply the signed content of register $t0 by 127.75 without using
multiplications and division instructions, we uke following MIPS instructions:

sl $t1, $t0, 7
sra $t2, $t0, 2
subu $t0, $t1, $t2

(18) The condition for which the data stored in $t0 msatisfy in order for the
following MIPS fragment to branch to L1 is:

If bit 0 and bit 4 and bit 8 are all equal to 1rihranch to L1

ori $t1, $0, 0x111
and $t0, $t0, $t1
beq $t0, $t1, L1

(19) The content of register$t0 after executing the following code is
1+2+3+4=0xa:

li $s1, 0x4321

xor $t0, $t0, $t0
Next:

andi $t1, $s1, Oxf

add $t0, $t0, $t1

srl $s1, $s1, 4

bne $s1, $0, Next

Page 5 of 9

[25 Points]

(Q2) Write separate MIPS assembly code fragments wiinimum instructions to
implement each of the given requirements.

(i) [6 points] Given two arrays of words A and B witleir base addresses stored in
registers $s0 and $s1, array size N is storeddnaw index i is stored $s3, write
the smallest MIPS assembly fragment for the follgwcomputation:

for (i=0; i<n; i++) if ((A[i]-B[i])*5 >=0) then A [i]= (A[i]-BI[i])*5:

Solution:
xor $s3, $s3,$s3 # i=0
Loop: bge $s3, $s2, EndFor # End loop if i>=n
lw $t0, O($s0) # $t0 = A[i]
lw $t1, 0($s1) # $t1 = BJi]
sub $tO, $t0, $t1 # $t0= A[i]B]i]
sll - $t1, $to, 2 # $t1= (AH] B[i])*4
add $t1, $t1, $t0 # $t1= (A[i] Bli])*5
bltz $t1, skip # do not gpte if (A[i] - B[i])*5) <0
sw $t1, 0($s0) # A[i] = (AH] BJi])*5
Skip: addiu $s0, $s0, 4 # update pointer #[i+1]
addiu $s1, $s1, 4 # update pointerB[i+1]
addiu $s3, $s3, 1 # update pointer
J Loop
EndFor:

Grading: 2 pts for the For, 1 pt for the If, 2 pts for teepression, and 1 pt for the store.
(i) [6 points] Given the following MPIS assembly fragm:
bne $s1, $s2, exit
bge $s2, $s3, exit
addi $s4, $s4, 5
Exit:

Assume that variables a, b, ¢, and d are storeghisters $s1, $s2, $s3, and
$s4, respectively.

Fill in the Boolean expression in the followingstatement:

If () then d=d +5;

Answer: if ((a==b)&&(b <c)) then d=d +5;
Repeat the above question for the following MPISeasbly fragment:

beq $s1, $s2, process

bgt $s2, $s3, exit

ble $s3, $s4, exit
process: add $s4, $s4, $s1
Exit:

Page 6 of 9
Fill in the Boolean expression in the followingdtatement:

If () then d=d +a;

Answer: if ((a==b) || (b <=c) && (c > d)) thend=d +a;
(i) [3 points] Write a MIPS assembly fragment for tok#dwing IF statement:
if ([(a==b)|[(c==d)]&& (a<c))thenb=d;

Assume that variables a, b, ¢, and d are storedrégfisters $s0, $s1, $s2, and
$s3, respectively.

Answer:
bge $s0, $s2, exit
beq $s0,$s1, process
bne $s2, $s3, exit
process: Add $s1, $s3, $zero
Exit:

(iv) [5 points] Write a MIPS assembly fragment to cotln& number of occurrence of
alpha characters (can be lowercase or uppercasa)null terminating string,
where the base address of the string is in regis@rand the count is to be in $s1

0 1 2 3 4 5 6 7 8 9 A B C D E H
2 | spacqg ! " # $ | % & ' () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 < = > ?
4 @ A B C D E F G H I J K L M N o]
5 P Q R S T u vV [w X Y z [\] n _
6 a b c d e f g h [] k I m n o]
7 p q r s t u % w X y z { [} ~ | DEL
Answer:

ori $t2,$zero, 0x41 #Ascii ohar A in t2

ori $t3,$zero, 0X5A #Ascii char Z in t3

xor $sl, $s1, $s1 # initializeunt to zero

move $t0, $s0 # $t0 points to firshar of string
Loop: Ib $t1, 0($t0) # load byte into $t1

beq $tl, $zero, exit # Exit if nulerminating char

andi $t1, $t1, OXDF # Convert mapital (if any)

blt $t1, $t2, Skip # Skip if belowx41 (not an alpha)

bgt $t1, $t3, Skip # Skip if abov@5A (not an alpha)

addiu $s1, $s1, 1 # increment count

Page 7 of 9
Skip: addi $t0, $t0, 1 # Incremerstring ptr
J Loop
Exit:
Grading: -1 pt if both domains are tested.

(v) [5 points] Write the most optimized MIPS assemliggment for the following
WHILE statement:

i=0;
WHILE ((A[i] >= BJ[i]*2) && (i<N)) { A[i] = A[i]- B[i];i=i+1;}

Where A and B are arrays of Bytes. The base adadrfeasays A and B are
stored into registers $s0 and $s1, respectivelg idex i and count N are
stored into registers $s2 and $s3.

Answer:

xor $s2,$s2,$s2 #indexi=0

Loop: bge $s2, $s3, exit #exitifi>=N
Ib $t0, 0 ($s0) # $t0 = A[i] as byte
Ib $t1, 0 ($s1) # $t1 = B[i] as byte
sll $t2, $t1, 1 # t2 =B[i]*2
bit $t0,$t2, exit # exitif A[i] < B[i]*2
sub $tO, $t0,$t1 # $t0= A[i]-BJi];
sb $t0,0($s0) # A[i] = A[i]-B[i];
addiu $s2, $s2, 1 # oi=i+l
addiu $s0, $s0, 1 # update ptr to A[i+1]
addiu $s1, $s1, 1 # update ptr to B[i+1]
J Loop

Exit:

Page 8 of 9

MIPS Instructions:

Instruction | Meaning

add $s1, $s2, $s3

$s1 = $s2 + $53

op=0

R-Type Format

rs = $s2

nt=%s3\rd =%s1|sa=0

f=0x20

addu $s1, $s2, $s3

$51 = $s2 + $s3

op=0

rs = §s2

n=%s3\rd =%s1/sa=0

f=0x21

sub $s1, $s2, $s3

$s1 = $52 — $53

op=0

rs = $s2

t=%s3\rd =%s1|/sa=0

f=0x22

subu $s1, $s2, $s3

$51 = %52 — $53

op=0

rs = $s2

nt=%s3\rd=%s1/sa=0

f=0x23

Instruction
and $s1, $s2, $s3

Meaning
$s51 = 852 & $s3

op=0

R-Type

rs = $s2

Format

nt=%s3|rd=%s1|sa=0

f=0x24

or $s1, $s2, $s3

$s1 =952 | $s3

op=0

s = $s2

nt=%s3(rd=%$s1|sa=0

f=0x25

xor $s1, $s2, $s3

$s1 =552 *» $53

op=0

s = $s2

nt=%s3|rd=%s1|sa=0

f=0x26

nor $s1, $s2, $s3

$s1 = ~($s2|%s3)

op=0

s = $s2

rnt=%s3|rd=%s1|sa=0

f=0x27

Instruction
sl $s1,%s2,10

Meaning
$51 = %52 =< 10

op=0

R-Type Format
rt = $s2|rd = $s1|sa =10

rs=0

srl $s1,$s52,10

%51 = $52=>=10

op=0

rs=0

t=%s2|rd = $s1|sa=10

sra $s1, $s2, 10

$s1 =852 == 10

op=0

rs=0

t=%$s2|rd = $s1|sa =10

sliv -~ $s1,%$52,553

$s51 = %52 =< $s3

op=0

rs = $s3

nt=%s2|\rd=%s1|sa=0

sriv $51,%52, 553

$51 = $52>>=553

op=0

rs = $s3

nt=%s2|rd=%s1|sa=0

srav $s1 %852 853

$s1 = %52 == $s3

op=0

rs = $s3

nt=%s2|rd=%s1|sa=0

=+ | =k | =k | =h | == | =k
||| MO

Instruction
addi $s1, $s2, 10

Meaning
$51=%s2+ 10

op = 0x&

rs = $s2

I-Type Format

= %s1

imm1 =10

addiu $s1, $s2, 10

%51 =552+ 10

op = 0x9

rs=%s2| rt = $s1

imm7 =10

andi $s1, $s2 10

$s1=%s2 & 10

op = 0xc

rs = $s2 | rt = $s1

imm1 =10

ori $s1, $s2, 10

$s1="%s2]10

op = Oxd

rs=%s2| rt = $s1

imm1 =10

xori $s1, §s2 10

$s1=%s2"10

op = Oxe

rs=%$s2| rt = $s1

imm1 =10

ui $s1,10

351 =10=<16

op = Oxf 0

rt = $s1

imm1 =10

Instruction
j label

Meaning
jump to label

opf=2

Format

imm26

beq rs, i, label

branch if (rs == rt)

opf =4

rs® | b

imm?16

bne rs, rt, label

branch if (rs I=

) |opf=5

rs |

imm?16

blez rs, label

branch if (rs<=0) |op®=6

rs®

imm?18

bgtz rs, label

opé=7

imm?16

bitz rs, label

rs®

imm?16

bgez rs, label

(

(
branch if (rs = 0

(
branch if (rs>=0

)
branchif(rs <0 opf =1
} Gpﬁ =1

0
rg® 0
0
1

rs®

imm?16

Instruction
sit rd, rs, rt

Meaning

rd=(rs<rt?1:0)

opt=0| rs® | rt?

Ox2a

slitu rd, rs, rt

rd=(rs<rt?1:0)

opf=0| rs® | r®

0x2b

siti rt, rs, imm'%| rt=(rs<imm?1

:0)

Oxa

imm?16

sltiu i, rs, imm| rt=(rs<imm?1

:0)

Oxb

imm?1é

Page 9 of 9

Instruction Meaning \ I-Type Format
b, imm%(rs) | it = MEM[rs+imm6] | 0x20 | rs5 | ri5 imm?16

lh i, imm%(rs) | rt = MEM[rs+imm18] | Ox21 | rs5 | ri5 imm?16

w i, imm%(rs) | rt = MEM[rs+imm8] | 0x23 | rs% | i’ imm?16

lhu rt, imm(rs) | rt = MEM[rs+imm?5] | Ox25 | rsd s imm?16

sb i, imm%(rs) | MEM[rs+imm%] =rt | 0x28 | rs® | rtd imm16

sh i, imm%(rs) | MEM[rs+imm6] =rt | 0x29 | rs’ 3 imm?18

(rs)
(rs)
(rs)
lbu rt, imm%(rs) | rt = MEM[rs+imm16] | 0x24 | rs5 | ri5 imm16
(rs)
(rs)
(rs)
(rs)

sw i, immi%(rs) | MEM[rs+imm'] =rt | Ox2b | rs® | rtd imm?16

