
Prepared by Dr. Muhamed Mudawar Page 1 of 8 

ICS 233 - Computer Architecture 
& Assembly Language 

 
Exam I – Fall 2007 

 
Saturday, November 3, 2007 

7:00 – 9:00 pm 
 

Computer Engineering Department 
College of Computer Sciences & Engineering 
King Fahd University of Petroleum & Minerals 

 
Student Name: SOLUTION  
 
Student ID:   

 
Q1 / 15 Q2 / 15 
Q3 / 15 Q4 / 10 
Q5 / 10 Q6 / 15 
Q7 / 20   

Total               / 100 

 
 
Important Reminder on Academic Honesty 
Using unauthorized information or notes on an exam, peeking at others work, or 
altering graded exams to claim more credit are severe violations of academic 
honesty. Detected cases will receive a failing grade in the course. 



 Page 2 of 8 

Q1. (15 pts) Find the word or phrase that best matches the following descriptions: 

a) Program that manages the resources of a computer for the benefit of the programs that 
run on that machine. 

 Operating System 

b) Program that translates from a high-level notation to assembly language. 

 Compiler 

c) Component of the processor that tells what to do according to the instructions.  

Control Unit 

e) Interface that the hardware provides to the software. 

 Instruction Set Architecture 

d) Microscopic flaw in a wafer. 

 Defect 

f) Rectangular component that results from dicing a wafer. 

 Die 

g) Computer inside another device used for running one predetermined application or 
collection of software. 

 Embedded System 
h) (3 pts) In a magnetic disk, the disks containing the data are constantly rotating. On 

average, it should take half a rotation for the desired data on the disk to spin under the 
read/write head. Assuming that the disk is rotating at 10000 RPM (Rotations Per 
Minute), what is the average time for the data to rotate under the disk head? 

 

 Average rotational latency = 1/2  * 60 * 1000 (msec /min) / 10000 = 3 milliseconds 

 
i) (5 pts) Assume you are in a company that will market a certain IC chip. The cost per 

wafer is $5000, and each wafer can be diced into 1200 dies. The die yield is 40%. 
Finally, the dies are packaged and tested, with a cost of $9 per chip. The test yield is 
80%; only those that pass the test will be sold to customers. If the retail price is 50% 
more than the cost, what is the selling price per chip? 

 

Number of working dies per wafer = 1200 * 0.4 = 480 

Packaging cost = 480 * $9 = $4320 

Number of working chips that will be sold to customers = 480 * 0.8 = 384 

Cost per chip = ($5000 + $4320) / 384 = $24.27 

Selling price per chip = $24.27 * 1.5 = $36.4



 Page 3 of 8 
Q2. (15 pts) Consider the following data definitions: 

 .data 
 var1: .byte 3, -2, 'A' 
 var2: .half 1, 256, 0xffff 
 var3: .word 0x3de1c74, 0xff 
 .align 3 
 str1: .asciiz "ICS233" 
 

a) Show the content of each byte of the allocated memory, in hexadecimal for the above 
data definitions. The Little Endian byte ordering is used to order the bytes within words 
and halfwords. Fill the symbol table showing all labels and their starting address. The 
ASCII code of character 'A' is 0x41, and '0' is 0x30. Indicate which bytes are skipped or 
unused in the data segment. 

 

 

 
Address Byte 0 Byte 1 Byte 2 Byte 3

0x10010000 0x03 0xfe 0x41 -- 

0x10010004 0x01 0x00 0x00 0x01

0x10010008 0xff 0xff -- -- 

0x1001000C 0x74 0x1c 0xde 0x03

0x10010010 0xff 0x00 0x00 0x00

0x10010014 -- -- -- -- 

0x10010018 0x49 0x43 0x53 0x32

0x1001001C 0x33 0x33 0x00  

0x10010020     

0x10010024     

0x10010028     

0x1001002C     

 
b) How many bytes are allocated in the data segment including the skipped bytes? 

 

 31 Bytes including the skipped ones 

Label 
 

var1 

var2 

var3 

str1 

Address 
 

0x10010000 

0x10010004 

0x1001000C 

0x10010018 
 

Symbol Table 

Data Segment 

Unused



 Page 4 of 8 
Q3. (15 pts) For each of the following pseudo-instructions, produce a minimal sequence of 

real MIPS instructions to accomplish the same thing. You may use the $at register only 
as a temporary register. 

 
a) abs   $s1, $s2 
 
 addu $s1, $zero, $s2 
 bgez $s2, next 
 subu $s1, $zero, $s2 
 next: 
 
 
b) addiu $s1, $s2, imm32 # imm32 is a 32-bit immediate 
 
 
 lui  $at, upper16 
 ori  $at, $at, lower16 
 addu $s1, $s2, $at 
 
 
c) bleu $s1, $s2, Label # branch less than or equal unsigned 
 
 sltu $at, $s2, $s1 
 beq  $at, $zero, Label 
 
 
d) bge $s1, imm32, Label # imm32 is a 32-bit immediate 
 
 
 lui $at, upper16 
 ori $at, $at, lower16 
 slt $at, $s1, $at 
 beq $at, $zero, Label 
 
 
e) rol $s1, $s2, 5  # rol = rotate left $s2 by 5 bits 

 
srl $at, $s2, 27 
sll $s1, $s2, 5 
or  $s1, $s1, $at 

32-bit register 



 Page 5 of 8 
Q4. (10 pts) Translate the following loop into assembly language where a and b are integer 

arrays whose base addresses are in $a0 and $a1 respectively. The value of n is in $a2. 
 

for (i=0; i<n; i++) { 
  if (i > 2) { 
    a[i] = a[i-2] + a[i-1] + b[i]; 
  } 
  else { 
    a[i] = b[i] 
  } 
} 

 
 li $t0, 0  # $t0 = i = 0 
 beq $a2, $0, skip # skip loop if n is zero  
loop:  lw $t1, 0($a1) # $t1 = b[i]  
 bgt $t0, 2, else # if (i>2) goto else 
 lw $t2, -8($a0) # $t2 = a[i-2] 
 lw $t3, -4($a0) # $t3 = a[i-1] 
 addu $t2, $t2, $t3 # $t2 = a[i-2]+a[i-1] 
 addu $t1, $t2, $t1 # $t1 = a[i-2]+a[i-1]+b[i] 
else: sw $t1, 0($a0) # a[i] = $t1  
 addiu $a0, $a0, 4 # advance array a pointer 
 addiu $a1, $a1, 4 # advance array b pointer 
 addiu $t0, $t0, 1 # i++ 
 bne $t0, $a2, loop 
skip: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Page 6 of 8 
Q5. (10 pts) Translate the following if-else statement into assembly language: 

if (($t0 >= '0') && ($t0 <= '9')) {$t1 = $t0 – '0';} 
else if (($t0 >= 'A') && ($t0 <= 'F')) {$t1 = $t0+10-'A';} 
else if (($t0 >= 'a') && ($t0 <= 'f')) {$t1 = $t0+10-'a';} 

 

 
blt   $t0, '0', else1 

bgt   $t0, '9', else1 

addiu $t1, $t0, -48  # '0' = 48 

j     next 

else1: 

 blt   $t0, 'A', else2 

 bgt   $t0, 'F', else2 

 addiu $t1, $t0, -55  # 10-'A' = 10-65=-55 

 j     next 

else2: 

 blt   $t0, 'a', next 

 bgt   $t0, 'f', next 

 addiu $t1, $t0, -87  # 10-'a' = 10-97=-87 

next: 



 Page 7 of 8 

Q6. The following code fragment processes two arrays and produces an important result in 
register $v0. Assume that each array consists of N words, the base addresses of the 
arrays A and B are stored in $a0 and $a1 respectively, and their sizes are stored in $a2 
and $a3, respectively. 
 sll $a2, $a2, 2 
 sll $a3, $a3, 2 
 addu $v0, $zero, $zero 
 addu $t0, $zero, $zero 
outer: addu $t4, $a0, $t0 
 lw $t4, 0($t4) 
 addu $t1, $zero, $zero 
inner: addu $t3, $a1, $t1 
 lw $t3, 0($t3) 
 bne $t3, $t4, skip 
 addiu $v0, $v0, 1 
skip: addiu $t1, $t1, 4 
 bne $t1, $a3, inner 
 addiu $t0, $t0, 4 
 bne $t0, $a2, outer 

a) (5 pts) Describe what the above code does and what will be returned in register $v0.  
 This code compares every element in the first array against 

all elements of the second array. It counts the number of 
matching elements between the two arrays. 

$v0 will contain the count of the number of matching 
elements between the two arrays. 

 

b) (10 pts) Write a loop that calculates the first N numbers in the Fibonacci sequence (1, 1, 
2, 3, 5, 8, 13, …), where N is stored in register $a0. Each element in the sequence is the 
sum of the previous two. Declare an array of words and store the generated elements of 
the Fibonacci sequence in the array. 

 
.data 

fibs: .space 200 # space for 50 integers 
.text 
.globl main 
main: 
 # you can read N from the input 
 la $t0, fibs 
 li $t1, 1 
 li $t2, 1 
L1: 
 sw $t1, 0($t0) 
 addu $t3, $t1, $t2 
 move $t1, $t2 
 move $t2, $t3 
 addiu $t0, $t0, 4 
 addiu $a0, $a0, -1 
 bne $a0, $zero, L1 



 Page 8 of 8 

 Q7. (20 Pts) Write MIPS assembly code for the procedure BinarySearch to search an array 
which has been previously sorted. Each element in the array is a 32-bit signed integer. 
The procedure receives three parameters: register $a0 = address of array to be 
searched, $a1 = size (number of elements) in the array, and $a2 = item to be searched. If 
found then BinarySearch returns in register $v0 = address of the array element where 
item is found. Otherwise, $v0 = 0. 

 
 BinarySearch ($a0=array, $a1=size, $a2=item) { 
  lower = 0; 
  upper = size-1; 
  while (lower <= upper) { 
    middle = (lower + upper)/2; 
    if (item == array[middle]) 
      return $v0 = ADDRESS OF array[middle]; 
    else if (item < array[middle]) 
      upper = middle–1; 
    else 
      lower = middle+1; 
  } 
  return $v0=0; 

 } 

 
BinarySearch: 
 li $t0, 0 # $t0 = lower index 
 addiu $t1, $a1, -1 # $t1 = upper index 
loop: 
 bgt $t0, $t1, ret 
 addu $t2, $t0, $t1 # $t2 = lower+upper 
 srl $t2, $t2, 1 # $t2 = (lower+upper)/2 
 sll $v0, $t2, 2 # $v0 = middle*4 
 addu $v0, $a0, $v0 # $v0 = address array[middle] 
 lw $t3, 0($v0) # $t3 = value array[middle] 
 bne $a2, $t3, else1 # (item == array[middle])? 
 jr $ra # return 
else1: 
 bgt $a2, $t3, else2 # (item < array[middle])? 
 addiu $t1, $t2, -1 # upper = middle-1 
 j loop 
else2: 
 addiu $t0, $t2, 1 # lower = middle+1 
 j loop 
ret: 
 andi $v0, $v0, 0 # $v0 = 0 

 jr $ra # return 


