Memory

ICS 233

Computer Architecture and Assembly Language
Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals
[Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Outline

* Random Access Memory and its Structure

“* Memory Hierarchy and the need for Cache Memory
¢+ The Basics of Caches

*» Cache Performance and Memory Stall Cycles

* Improving Cache Performance

+» Multilevel Caches

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 2

Random Access Memory

¢ Large arrays of storage cells

*» Volatile memory

< Hold the stored data as long as it is powered on

+» Random Access

<> Access time is practically the same to any data on a RAM chip

¢ Chip Select (CS) control signal RAM
<> Select RAM chip to read/write —nh> Address

< Read/Write (R/W) control signal A
< Specifies memory operation CTS R;W

s 2" x m RAM chip: n-bit address and m-bit data

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 3

Typical Memory Structure

+» Row decoder

\

< Select row to read/write

1024 x 1024
Cell Matrix

+» Column decoder

< Select column to read/write

¢ Cell Matrix

Row address
t'a
Row Decoder

T~
< 2D array of tiny memory cells Sata
: - — Sense/write amplifiers
* Sense/Write amplifiers RIW — P
< Sense & amplify data on read —
\ Column Decoder /
<> Drive bit line with data in on write ?
10

%+ Same data lines are used for data in/out Column address

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 4

Static RAM Storage Cell

s Static RAM (SRAM): fast but expensive RAM

s+ 6-Transistor cell with no static current

¢ Typically used for caches Word line
Vce A
** Provides fast access time
b
¢ Cell Implementation:
<> Cross-coupled inverters store bit - _|f|
bit 1 bit

<> Two pass transistors =
Typical SRAM cell
< Row decoder selects the word line

<> Pass transistors enable the cell to be read and written

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 5

Dynamic RAM Storage Cell

* Dynamic RAM (DRAM): slow, cheap, and dense memory

¢ Typical choice for main memory Word line

 Cell Implementation:

Pass
Transistor

< 1-Transistor cell (pass transistor) —

N
< Trench capacitor (stores bit) Capacitor

¢ Bit is stored as a charge on capacitor oit -
< Must be refreshed periodically Typical DRAM cell

<> Because of leakage of charge from tiny capacitor

*» Refreshing for all memory rows

< Reading each row and writing it back to restore the charge

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 6

DRAM Refresh Cycles

** Refresh cycle is about tens of milliseconds

*» Refreshing is

done for the entire memory

*» Each row is read and written back to restore the charge

“ Some of the memory bandwidth is lost to refresh cycles

Voltage A 1 Written Refreshed Refreshed Refreshed
Threshold
voltage [~~~ """ TTTTTTTTTTTTTT T m oo oo soomomooooomoooooomoooooo-
0 Stored | Refresh Cycle
Voltage Time
for O [| >

Memory

ICS 233 - KFUPM © Muhamed Mudawar slide 7

Loss of Bandwidth to Refresh Cycles

s Example:
< A 256 Mb DRAM chip
< Organized internally as a 16K x 16K cell matrix
< Rows must be refreshed at least once every 50 ms
< Refreshing a row takes 100 ns

< What fraction of the memory bandwidth is lost to refresh cycles?
¢ Solution:

< Refreshing all 16K rows takes: 16 x 1024 x 100 ns = 1.64 ms

< Loss of 1.64 ms every 50 ms

<> Fraction of lost memory bandwidth = 1.64 / 50 = 3.3%

Memory ICS 233 - KFUPM © Muhamed Mudawar slide &

Typical DRAM Packaging

% 24-pin dual in-line package for 16Mbit = 222 x 4 memory

% 22-bit address is divided into Legend
_ Al Address bit i
< 11-bit row address CAS Column address strobe
Dj Data bit |
< 11-bit column address NC No connection

OE Output enable
RAS Row address strobe

< Interleaved on same address lines WE Write enable

Vss D4 D3 CASOE A9 A8 A7 A6 A5 A4 Vss
S [N N N N N N U N N N O N = N = I

24 23 22 21 20 19 18 17 16 15 14 13

1 2 3 4 5 6 7 8 9 10 11 12
I I I It I I I I I I I
Vcc D1 D2 WE RAS NC A10 AO A1 A2 A3 Vcc

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 9

Trends in DRAM

DRAM capacity quadrupled every three years until 1996

After 1996, DRAM capacity doubled every two years

Year : Total access time | Column access
introduced Capacity | Cost per MB to a new row to existing row
1980 64 Kbit | $1500.00 250 ns 150 ns
1983 256 Kbit $500.00 185 ns 100 ns
1985 1 Mbit $200.00 135 ns 40 ns
1989 4 Mbit $50.00 110 ns 40 ns
1992 16 Mbit $15.00 90 ns 30 ns
1996 64 Mbit $10.00 60 ns 12 ns
1998 128 Mbit $4.00 60 ns 10 ns
2000 256 Mbit $1.00 55ns 7ns
2002 512 Mbit $0.25 50 ns 5ns
2004 1024 Mbit $0.10 45 ns 3ns

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 10

Expanding the Data Bus Width

“* Memory chips typically have a narrow data bus

** We can expand the data bus width by a factor of p
< Use p RAM chips and feed the same address to all chips

< Use the same Chip Select and Read/Write control signals

cs RW cs RW cs RW
Address Address R —p Address
Data Data Data
! —
L

Data width = m x p bits

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 77

Increasing Memory Capacity by 2%

% A k to 2k decoder is used to select one of the 2k chips

< Upper n bits of address is fed to all memory chips

<> Lower k bits of address are decoded to select one of the 2k chips

§ n+k k ; <> Data bus of all chips are wired together
L s kto2
2 nk decoder | < Only the selected chip will read/write the data
1
CS R/W CS R/W C R/W
—p Address Address P —p Address
Data Data Data
m im Data width = m bits Im
m

Memory

ICS 233 - KFUPM © Muhamed Mudawar slide 72

Next . ..

* Random Access Memory and its Structure

“* Memory Hierarchy and the need for Cache Memory
¢+ The Basics of Caches

*» Cache Performance and Memory Stall Cycles

* Improving Cache Performance

+» Multilevel Caches

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 13

Processor-Memory Performance Gap

CPU: 55% per year

1000

Performance

100

=
o

“Moore’s Law”

Processor-Memory
Performance Gap:
(grows 50% per year)

DRAM: 7% per year

1980
1981
1982 |
1983 |
1984 |
1985 |
1986 |
1987 |
1988 |
1989 |
1990 |
1991 |
1992 |
1993 |
1994 |
1995 |
1996
1997 |
1998
1999 |
2000

* 1980 — No cache in microprocessor

s 1995 — Two-level cache on microprocessor

Memory

ICS 233 - KFUPM

© Muhamed Mudawar slide 74

The Need for a Memory Hierarchy

*» Widening speed gap between CPU and main memory
<> Processor operation takes less than 1 ns

<> Main memory requires more than 50 ns to access

¢ Each instruction involves at least one memory access
< One memory access to fetch the instruction

<> A second memory access for load and store instructions
“* Memory bandwidth limits the instruction execution rate
*» Cache memory can help bridge the CPU-memory gap

% Cache memory is small in size but fast

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 75

Typical Memory Hierarchy

*+ Registers are at the top of the hierarchy

< Typical size <1 KB
< Access time < 0.5 ns

*» Level 1 Cache (8 — 64 KB) Microprocessor
<~ Accesstime: 0.5-1ns i Registers)
¢ L2 Cache (512KB — 8MB) L1 Cache
< Accesstime: 2-10ns _ L2 Cache _
* Main Memory (1 — 2 GB) % \ Memory Bu; :i?
<~ Access time: 50 — 70 ns Memory
¢ Disk Storage (> 200 GB) /O Bus

Disk, Tape, etc

< Access time: milliseconds

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 76

Principle of Locality of Reference

** Programs access small portion of their address space

< At any time, only a small set of instructions & data is needed

*» Temporal Locality (in time)
< If an item is accessed, probably it will be accessed again soon
<> Same loop instructions are fetched each iteration
<> Same procedure may be called and executed many times
*» Spatial Locality (in space)
<> Tendency to access contiguous instructions/data in memory

< Seguential execution of Instructions

< Traversing arrays element by element

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 17

What is a Cache Memory ?

*» Small and fast (SRAM) memory technology

<> Stores the subset of instructions & data currently being accessed
* Used to reduce average access time to memory

*» Caches exploit temporal locality by ...

< Keeping recently accessed data closer to the processor

s Caches exploit spatial locality by ...

< Moving blocks consisting of multiple contiguous words

* Goal is to achieve
< Fast speed of cache memory access

<> Balance the cost of the memory system

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 78

Cache Memories in the Datapath

PCSrc

Xc3

Control
Address
Data

Memory

I o Next [*
PC |
Imm26 1 Imm16 E
| E ALU result
I | =]
_ Instruction | | _ TS < ﬁ\ g " L el
3 Cache S[Rs B R D-l-b ress m =
: 2| Rt Register o L <] Data X £
Instruction = 7|3 > ~ u s
= Address = File m X Cache B
o > L | 0 $| Ol Data_in Vo
1 1
|| m|=A y Y "5 | | 1l
Rd |4 gl= gl gl
- = _ _-‘
\ 4 \ 4
\ 4

Main Memory

ICS 233 - KFUPM

© Muhamed Mudawar slide 79

Almost Everything is a Cache |

¢ In computer architecture, almost everything is a cache!
** Registers: a cache on variables — software managed
¢ First-level cache: a cache on second-level cache

\/ .

*» Second-level cache: a cache on memory

** Memory: a cache on hard disk
< Stores recent programs and their data

<> Hard disk can be viewed as an extension to main memory

¢ Branch target and prediction buffer

< Cache on branch target and prediction information

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 20

Next . ..

* Random Access Memory and its Structure

“* Memory Hierarchy and the need for Cache Memory
*+ The Basics of Caches

*» Cache Performance and Memory Stall Cycles

* Improving Cache Performance

+» Multilevel Caches

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 27

Four Basic Questions on Caches

* Q1: Where can a block be placed in a cache?
< Block placement
< Direct Mapped, Set Associative, Fully Associative

* Q2: How is a block found in a cache?
<> Block identification
<> Block address, tag, index

*» Q3: Which block should be replaced on a miss?
< Block replacement
< FIFO, Random, LRU

“* Q4. What happens on a write?

< Write strategy
<> Write Back or Write Through (with Write Buffer)

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 22

Block Placement: Direct Mapped

“ Block: unit of data transfer between cache and memory

¢ Direct Mapped Cache:

< A block can be placed in exactly one location in the cache
OO A0 O
OO0 dd O O
OO OO
In this example: o
Cache index = P S
least significant 3 bits T | O
of Memory address
B\
= e N N
\ \\ ™ -
£ 0
vd od / N N R R T £
= o
=
OO 10 d 0O 10010 dO0O 1010101010 d0O0d0 O
OO0 ddO0O 0O A1 00dd OO0 ddO0 0 dd OO0 d100ddOO—d
OO0 0 dAddcd OO0 0O Adddd OO0 00 dddcdOOOO
OO0 000000 dAddddddd OO0 0O0O0O0O0 v e o
OO 0000000000000 ddAddAdAdAdA A A

Memory

ICS 233 - KFUPM

© Muhamed Mudawar slide 23

Direct-Mapped Cache

“* A memory address is divided into

Block Address

A
r N\

<> Block address: identifies block in memory

Tag Index [offset

<> Block offset: to access bytes within a block ——

«» A block address is further divided into V_Tag Block Data

< Index: used for direct cache access

< Tag: most-significant bits of block address

Index = Block Address mod Cache Blocks

“ Tag must be stored also inside cache

< For block identification

“ A valid bit is also required to indicate Data

<> Whether a cache block is valid or not Hit

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 24

Direct Mapped Cache - cont'd

+* Cache hit: block is stored inside cache
. Block Address
< Index is used to access cache block p A .

Tag Index [offset

]

<> Address tag is compared against stored tag

< If equal and cache block is valid then hit
V Tag Block Data

< Otherwise: cache miss

» If number of cache blocks is 2"

<> n bits are used for the cache index

% If number of bytes in a block is 2P

<> b bits are used for the block offset

¢ |If 32 bits are used for an address
<> 32 — n — b bits are used for the tag

Data

% Cache data size = 2" bytes

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 25

Mapping an Address to a Cache Block

* Example
<> Consider a direct-mapped cache with 256 blocks
<> Block size = 16 bytes
< Compute tag, index, and byte offset of address: OXO1FFFSAC

Block Address

J . N
+» Solution — —

<~ 32-bit address is divided into: Tag Index |offset
= 4-bit byte offset field, because block size = 24 = 16 bytes

= 8-bit cache index, because there are 28 = 256 blocks in cache
= 20-bit tag field
< Byte offset = OxC = 12 (least significant 4 bits of address)
<> Cache index = O0x8A = 138 (next lower 8 bits of address)
< Tag = OXO1FFF (upper 20 bits of address)

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 26

Example on Cache Placement & Misses

*» Consider a small direct-mapped cache with 32 blocks

< Cache is initially empty, Block size = 16 bytes

< The following memory addresses (in decimal) are referenced:

1000, 1004, 1008, 2548, 2552, 2556.

< Map addresses to cache blocks and indicate whether hit or miss

+» Solution:

< 1000 = Ox3ES8
< 1004 = Ox3EC
< 1008 = 0x3F0
< 2548 = 0x9F4
< 2552 = 0x9F8
< 2556 = OX9FC

Memory

23 5 4

Tag Index |offset

cache index = Ox1E
cache index = Ox1E
cache index = Ox1F
cache index = Ox1F
cache index = Ox1F
cache index = Ox1F

ICS 233 - KFUPM

Miss (first access)
Hit
Miss (first access)
Miss (different tag)
Hit
Hit

© Muhamed Mudawar slide 27

Fully Associative Cache

¢ A block can be placed anywhere in cache = no indexing

¢ If m blocks exist then

<> m comparators are needed to match tag

<> Cache data size = m x 2b bytes

Address

Tag

offset

V Tag Block Data

V Tag Block Data

V Tag Block Data

V Tag Block Data

T

!

?

!

[
-

m-way associative

Memory

A

y \ 4

N

ICS 233 - KFUPM

\

\
\ mux
Data

© Muhamed Mudawar slide 28

Set-Associative Cache

* A set is a group of blocks that can be indexed

*» A block is first mapped onto a set

< Set index = Block address mod Number of sets in cache

» If there are m blocks in a set (m-way set associative) then

< m tags are checked in parallel using m comparators
» If 2" sets exist then set index consists of n bits

% Cache data size = m x 2™b bytes (with 2P bytes per block)
< Without counting tags and valid bits

*» A direct-mapped cache has one block per set (m =1)

¢ A fully-associative cache has one set (2"=1orn =20)

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 29

Set-Associative Cache Diagram

Address Tag Index |offset
!
V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data
>e| o ? >le| o >e| o >e| o
) 4) 4
\ 4 \Q \ (%—
LT) <

v v V

.. : \ mux
m-way set-associative Hit
Data

Memory ICS 233 - KFUPM

© Muhamed Mudawar slide 30

Write Policy

s Write Through:
< Writes update cache and lower-level memory
<> Cache control bit: only a Valid bit is needed
< Memory always has latest data, which simplifies data coherency
<> Can always discard cached data when a block is replaced

*» Write Back:
<> Writes update cache only
< Cache control bits: Valid and Modified bits are required
<> Modified cached data is written back to memory when replaced
<> Multiple writes to a cache block require only one write to memory
< Uses less memory bandwidth than write-through and less power
<> However, more complex to implement than write through

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 37

Write Miss Policy

“* What happens on a write miss?

» Write Allocate:
< Allocate new block in cache

<> Write miss acts like a read miss, block is fetched and updated

* No Write Allocate:

< Send data to lower-level memory
< Cache is not modified

*» Typically, write back caches use write allocate

<> Hoping subsequent writes will be captured in the cache

“* Write-through caches often use no-write allocate

< Reasoning: writes must still go to lower level memory

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 32

Write Buffer

¢ Decouples the CPU write from the memory bus writing

< Permits writes to occur without stall cycles until buffer is full

** Write-through: all stores are sent to lower level memory

<> Write buffer eliminates processor stalls on consecutive writes

*» Write-back: modified blocks are written when replaced

< Write buffer is used for evicted blocks that must be written back

¢ The address and modified data are written in the buffer
< The write is finished from the CPU perspective

<> CPU continues while the write buffer prepares to write memory

» If buffer is full, CPU stalls until buffer has an empty entry

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 33

What Happens on a Cache Miss?

¢ Cache sends a miss signal to stall the processor

¢ Decide which cache block to allocate/replace
<> One choice only when the cache is directly mapped

<> Multiple choices for set-associative or fully-associative cache

¢ Transfer the block from lower level memory to this cache
< Set the valid bit and the tag field from the upper address bits

* If block to be replaced is modified then write it back
<> Modified block is moved into a Write Buffer
< Otherwise, block to be replaced can be simply discarded

+» Restart the instruction that caused the cache miss

*» Miss Penalty: clock cycles to process a cache miss

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 34

Replacement Policy

¢ Which block to be replaced on a cache miss?
** No selection alternatives for direct-mapped caches
“* m blocks per set to choose from for associative caches

** Random replacement
<> Candidate blocks are randomly selected
< One counter for all sets (0 to m — 1): incremented on every cycle
<> On a cache miss replace block specified by counter

¢ First In First Out (FIFO) replacement
< Replace oldest block in set
<> One counter per set (0 to m — 1): specifies oldest block to replace

<> Counter is incremented on a cache miss

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 35

Replacement Policy - cont'd

¢ Least Recently Used (LRU)
< Replace block that has been unused for the longest time
<> Order blocks within a set from least to most recently used
<> Update ordering of blocks on each cache hit

< With m blocks per set, there are m! possible permutations

¢ Pure LRU is too costly to implement when m > 2
< m = 2, there are 2 permutations only (a single bit is needed)
< m =4, there are 4! = 24 possible permutations
< LRU approximation are used in practice

** For large m > 4,

Random replacement can be as effective as LRU

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 36

Next . ..

* Random Access Memory and its Structure

“* Memory Hierarchy and the need for Cache Memory
¢+ The Basics of Caches

* Cache Performance and Memory Stall Cycles

* Improving Cache Performance

+» Multilevel Caches

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 37

Hit Rate and Miss Rate

* Hit Rate = Hits / (Hits + Misses)
* Miss Rate = Misses / (Hits + Misses)
*» |-Cache Miss Rate = Miss rate in the Instruction Cache
*» D-Cache Miss Rate = Miss rate in the Data Cache
“ Example:
<> Out of 1000 instructions fetched, 150 missed in the I-Cache

<> 25% are load-store instructions, 50 missed in the D-Cache

< What are the I-cache and D-cache miss rates?

s |-Cache Miss Rate = 150/ 1000 = 15%
*» D-Cache Miss Rate = 50/ (25% x 1000) =50/ 250 = 20%

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 38

Memory Stall Cycles

¢ The processor stalls on a Cache miss
<> When fetching instructions from the Instruction Cache (I-cache)

< When loading or storing data into the Data Cache (D-cache)
Memory stall cycles = Combined Misses x Miss Penalty
“* Miss Penalty: clock cycles to process a cache miss
Combined Misses = |-Cache Misses + D-Cache Misses
|-Cache Misses = I-Count x |-Cache Miss Rate
D-Cache Misses = LS-Count x D-Cache Miss Rate
LS-Count (Load & Store) = I-Count x LS Frequency

* Cache misses are often reported per thousand instructions

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 39

Memory Stall Cycles Per Instruction

** Memory Stall Cycles Per Instruction =
|-Cache Miss Rate x Miss Penalty +
LS Frequency x D-Cache Miss Rate x Miss Penalty
“» Combined Misses Per Instruction =
|-Cache Miss Rate + LS Frequency x D-Cache Miss Rate
* Therefore, Memory Stall Cycles Per Instruction =
Combined Misses Per Instruction x Miss Penalty
*+ Miss Penalty is assumed equal for |-cache & D-cache

“* Miss Penalty is assumed equal for Load and Store

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 40

Example on Memory Stall Cycles

*» Consider a program with the given characteristics
<> Instruction count (I-Count) = 10° instructions
< 30% of instructions are loads and stores
<> D-cache miss rate is 5% and I-cache miss rate is 1%
< Miss penalty is 100 clock cycles for instruction and data caches
< Compute combined misses per instruction and memory stall cycles

“ Combined misses per instruction in I-Cache and D-Cache
< 1% + 30% x 5% = 0.025 combined misses per instruction
< Equal to 25 misses per 1000 instructions

“* Memory stall cycles
< 0.025 x 100 (miss penalty) = 2.5 stall cycles per instruction
< Total memory stall cycles = 10° x 2.5 = 2,500,000

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 47

CPU Time with Memory Stall Cycles

CPU Time = I-Count x CPI x Clock Cycle

MemoryStalls

CPI = CPI + Mem Stalls per Instruction

MemoryStalls PerfectCache

 CPI

CPI for ideal cache (no cache misses)

PerfectCache

» CPI

CPI in the presence of memory stalls

MemoryStalls

“* Memory stall cycles increase the CPI

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 42

Example on CPI with Memory Stalls

¢ A processor has CPI of 1.5 without any memory stalls
<> Average cache miss rate is 2% for instruction and data
< 50% of instructions are loads and stores
<> Cache miss penalty is 100 clock cycles for I-cache and D-cache

“* What is the impact on the CPI?

< Answer: Instruction data

AL A

Mem Stalls per Instruction = 0.02x100 + 0.5x0.02x100 = 3

CPlyiemorystals = 1.9 + 3 = 4.5 cycles per instruction

CPIMemoryStalIs/ CPIPerfectCache = 45/15=3
Processor is 3 times slower due to memory stall cycles
CPlyocache = 1.5+ (1 +0.5) x 100 = 151.5 (a lot worse)

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 43

Designing Memory to Support Caches

One-word-wide Memory Organization

Me

CPU
I T

Cache

:]Bus[:

Memory

mory

CPU
LT

Multiplexer

L JIT JIT TIT I

Cache

Memory

Wide Memory Organization

One Word Wide:
CPU, Cache, Bus, and Memory
have word width: 32 or 64 bits

Interleaved:
CPU, Cache, Bus: 1 word
Memory: N independent banks

ICS 233 - KFUPM

Wide:

CPU, Mux: 1 word
Cache, Bus, Memory: N words
Alpha: 256 bits
Ultra SPARC: 512 bits

CPU

I T

Cache

:]Bus[:

Memory
bank O

Memory
bank 1

Memory
bank 2

Memory
bank 3

Interleaved Memory Organization

© Muhamed Mudawar slide 44

<>

Memory Interleaving

“* Memory interleaving is more flexible than wide access

<> A block address is sent only once to all memory banks
<> Words of a block are distributed (interleaved) across all banks

Banks are accessed in parallel

< Words are transferred one at a time on each bus cycle

Bus
cycle

All banks access
same block address

...._ word o (bank 0)

block address

—Word 3 (bank 3)
-word 2 (bank 2)

_ Word 1 (bank 1)

» Time

Memory

ICS 233 - KFUPM

CPU

I T

Cache

1 Bus [

Memory
bank O

Memory
bank 1

Memory
bank 2

Memory
bank 3

Interleaved Memory Organization

© Muhamed Mudawar slide 45

Estimating the Miss Penalty

** Timing Model: Assume the following ...
< 1 memory bus cycle to send address
< 15 memory bus cycles for DRAM access time
< 1 memory bus cycle to send data
< Cache Block is 4 words

% One-Word-Wide Memory Organization

Miss Penalty =1 + 4 x15 + 4 x 1 = 65 memory bus cycles
“* Wide Memory Organization (2-word wide)

Miss Penalty =1 + 2 x15 + 2 x 1 = 33 memory bus cycles
* Interleaved Memory Organization (4 banks)

Miss Penalty =1 + 1 x15 + 4 x 1 = 20 memory bus cycles

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 46

Next . ..

* Random Access Memory and its Structure

“* Memory Hierarchy and the need for Cache Memory
¢+ The Basics of Caches

*» Cache Performance and Memory Stall Cycles

* Improving Cache Performance

+» Multilevel Caches

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 47

Improving Cache Performance

“+ Average Memory Access Time (AMAT)
AMAT = Hit time + Miss rate * Miss penalty

* Used as a framework for optimizations

++» Reduce the Hit time

< Small and simple caches

+* Reduce the Miss Rate

< Larger cache size, higher associativity, and larger block size

¢ Reduce the Miss Penalty

< Multilevel caches

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 48

Small and Simple Caches

“ Hit time Is critical: affects the processor clock rate

< Fast clock cycle demands small and simple L1 cache designs

* Small cache reduces the indexing time and hit time
< Indexing a cache represents a time consuming portion
<> Tag comparison also adds to this hit time

¢ Direct-mapped overlaps tag check with data transfer

< Associative cache uses additional mux and increases hit time

¢ Size of L1 caches has not increased much
< L1 caches are the same size on Alpha 21264 and 21364
<> Same also on UltraSparc Il and I, AMD K6 and Athlon
< Reduced from 16 KB in Pentium Il to 8 KB in Pentium 4

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 49

Larger Size and Higher Associativity

% Cache misses:
<~ Compulsory misses are those misses caused by the first reference to a datum

<- Capacity misses are those misses that occur regardless of associativity or block
size, solely due to the finite size of the cache

< Conflict misses are those misses that could have been avoided, had the cache
not evicted an entry earlier.

¢ Increasing cache size reduces capacity misses and conflict misses
¢ Larger cache size spreads out references to more blocks

+ Drawbacks: longer hit time and higher cost

% Larger caches are especially popular as 2" |evel caches

* Higher associativity also improves miss rates

< Eight-way set associative is as effective as a fully associative

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 50

Miss rate versus cache size on the
Integer portion of SPEC CPU2000

i

| | | |]

Dot m—

I“”‘ —]

4“? —

.01 - 8 way -

.ul —]
RO |-
.! p.0001 |-
12008 |-
18005 |-

]]]]]
1R 41 18 B 2K 1M It

onaha alze

ICS 233 - KFUPM © Muhamed Mudawar slide 57

Larger Block Size

* Simplest way to reduce miss rate is to increase block size

«» However, it increases conflict misses if cache is small

Miss Rate

Memory

25% 1
20% 1

15%(

Reduced
- Compulsory
Misses

5%]

-- Increased Conflict Misses

I ; — 10— —a—
O% 1 : 1 1 j
O AN < 0 O

—i ™ O Q\| Lo

—i AN

ICS 233 - KFUPM

" 1K

" 4K

*— 16K
" 64K

" 256K

64-byte
blocks are
common in
L1 caches

128-byte
block are
common in
L2 caches

Block Size (bytes)

© Muhamed Mudawar slide 52

Next . ..

* Random Access Memory and its Structure

“* Memory Hierarchy and the need for Cache Memory
¢+ The Basics of Caches

*» Cache Performance and Memory Stall Cycles

* Improving Cache Performance

+*» Multilevel Caches

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 53

Multilevel Caches

*» Top level cache should be kept small to

< Keep pace with processor speed

< Adding another cache level -Cache || D-Cache

A A

<> Can reduce the memory gap Unified L2 Cache

A

< Can reduce memory bus loading v
Main Memory

¢ Local miss rate
< Number of misses in a cache / Memory accesses to this cache

< Miss Rate , for L1 cache, and Miss Rate , for L2 cache

+» Global miss rate

Number of misses in a cache / Memory accesses generated by CPU

Miss Rate, , for L1 cache, and Miss Rate ; x Miss Rate, for L2 cache

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 54

Multilevel Cache Policies

++» Multilevel Inclusion

Memory

< L1 cache data is always present in L2 cache

< Amissin L1, buta hitin L2 copies block from L2 to L1
< Amissin L1 and L2 brings a block into L1 and L2

< A write in L1 causes data to be written in L1 and L2

< Typically, write-through policy is used from L1 to L2

< Typically, write-back policy is used from L2 to main memory

* To reduce traffic on the memory bus

< A replacement or invalidation in L2 must be propagated to L1

ICS 233 - KFUPM © Muhamed Mudawar slide 55

Multilevel Cache Policies - cont'd

*» Multilevel exclusion
< L1 data is never found in L2 cache — Prevents wasting space
< Cache miss in L1, but a hit in L2 results in a swap of blocks
< Cache miss in both L1 and L2 brings the block into L1 only
< Block replaced in L1 is moved into L2

< Example: AMD Athlon

*» Same or different block size in L1 and L2 caches
<> Choosing a larger block size in L2 can improve performance

<> However different block sizes complicates implementation

< Pentium 4 has 64-byte blocks in L1 and 128-byte blocks in L2

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 56

Two-Level Cache Performance - 1/2

* Average Memory Access Time:
AMAT = Hit Time_, + Miss Rate ; x Miss Penalty, ,
¢ Miss Penalty for L1 cache in the presence of L2 cache
Miss Penalty, ; = Hit Time_, + Miss Rate , x Miss Penalty,,
% Average Memory Access Time with a 2"d Level cache:
AMAT = Hit Time , + Miss Rate ; x
(Hit Time, + Miss Rate , x Miss Penalty, ,)
*» Memory Stall Cycles per Instruction =

Memory Access per Instruction x (AMAT — Hit Time, ;)

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 57

Two-Level Cache Performance - 2/2

* Average memory stall cycles per instruction =
Memory Access per Instruction x Miss Rate ; X
(Hit Time, + Miss Rate , x Miss Penalty,,)
* Average memory stall cycles per instruction =
Misses per instruction, ; X Hit Time, +
Misses per instruction, , x Miss Penalty, ,
% Misses per instruction, ; =
MEM access per instruction x Miss Rate ,
% Misses per instruction,, =
MEM access per instruction x Miss Rate,; x Miss Rate,,

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 58

Example on Two-Level Caches

* Problem:
< Miss Rate ; = 4%, Miss Rate , = 25%
< Hittime of L1 cache is 1 cycle and of L2 cache is 10 cycles
< Miss penalty from L2 cache to memory is 100 cycles
<> Memory access per instruction = 1.25 (25% data accesses)
< Compute AMAT and memory stall cycles per instruction

 Solution:
AMAT =1 + 4% x (10 + 25% x 100) = 2.4 cycles
Misses per instruction in L1 = 4% x 1.25 = 5%
Misses per instruction in L2 = 4% x 25% x 1.25 = 1.25%
Memory stall cycles per instruction = 5% x 10 + 1.25% x 100 = 1.75
Can be also obtained as: (2.4 — 1) x 1.25 = 1.75 cycles

Memory ICS 233 - KFUPM © Muhamed Mudawar slide 59

