
Memory

ICS 233
Computer Architecture and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 2

Outline
Random Access Memory and its Structure

Memory Hierarchy and the need for Cache Memory

The Basics of Caches

Cache Performance and Memory Stall Cycles

Improving Cache Performance

Multilevel Caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 3

Large arrays of storage cells

Volatile memory
Hold the stored data as long as it is powered on

Random Access
Access time is practically the same to any data on a RAM chip

Chip Select (CS) control signal
Select RAM chip to read/write

Read/Write (R/W) control signal
Specifies memory operation

2n × m RAM chip: n-bit address and m-bit data

Random Access Memory

RAM
Address

Data

CS R/W

n

m

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 4

Row decoder
Select row to read/write

Column decoder
Select column to read/write

Cell Matrix
2D array of tiny memory cells

Sense/Write amplifiers
Sense & amplify data on read

Drive bit line with data in on write

Same data lines are used for data in/out

Typical Memory Structure

R
ow

 a
dd

re
ss

10

. . .

. .
 . 1024 × 1024

Cell Matrix

R
ow

 D
ec

od
er

Sense/write amplifiers

Column Decoder

. . .

Column address
10

Data

R / W

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 5

Static RAM Storage Cell
Static RAM (SRAM): fast but expensive RAM

6-Transistor cell with no static current

Typically used for caches

Provides fast access time

Cell Implementation:

Cross-coupled inverters store bit

Two pass transistors

Row decoder selects the word line

Pass transistors enable the cell to be read and written

Typical SRAM cell

Vcc

Word line

bit bit

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 6

Dynamic RAM Storage Cell
Dynamic RAM (DRAM): slow, cheap, and dense memory

Typical choice for main memory

Cell Implementation:
1-Transistor cell (pass transistor)

Trench capacitor (stores bit)

Bit is stored as a charge on capacitor

Must be refreshed periodically
Because of leakage of charge from tiny capacitor

Refreshing for all memory rows
Reading each row and writing it back to restore the charge

Typical DRAM cell

Word line

bit

Capacitor

Pass
Transistor

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 7

DRAM Refresh Cycles

Time

Threshold
voltage

0 Stored

1 Written Refreshed Refreshed Refreshed

Refresh Cycle

Voltage
for 1

Voltage
for 0

Refresh cycle is about tens of milliseconds

Refreshing is done for the entire memory

Each row is read and written back to restore the charge

Some of the memory bandwidth is lost to refresh cycles

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 8

Loss of Bandwidth to Refresh Cycles
Example:

A 256 Mb DRAM chip

Organized internally as a 16K × 16K cell matrix

Rows must be refreshed at least once every 50 ms

Refreshing a row takes 100 ns

What fraction of the memory bandwidth is lost to refresh cycles?

Solution:
Refreshing all 16K rows takes: 16 × 1024 × 100 ns = 1.64 ms

Loss of 1.64 ms every 50 ms

Fraction of lost memory bandwidth = 1.64 / 50 = 3.3%

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 9

Typical DRAM Packaging
24-pin dual in-line package for 16Mbit = 222 × 4 memory

22-bit address is divided into
11-bit row address

11-bit column address

Interleaved on same address lines

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

A4A5A6A7A8A9D3D4 CAS OE VssVss

A0 A1 A2 A3A10D1 D2 RASWEVcc VccNC

Legend

Ai
CAS
Dj
NC
OE
RAS
WE

Address bit i
Column address strobe
Data bit j
No connection
Output enable
Row address strobe
Write enable

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 10

Trends in DRAM
DRAM capacity quadrupled every three years until 1996
After 1996, DRAM capacity doubled every two years

3 ns45 ns$0.101024 Mbit2004
5 ns50 ns$0.25512 Mbit2002
7 ns55 ns$1.00256 Mbit2000

10 ns60 ns$4.00128 Mbit1998
12 ns60 ns$10.0064 Mbit1996
30 ns90 ns$15.0016 Mbit1992
40 ns110 ns$50.004 Mbit1989
40 ns135 ns$200.001 Mbit1985

100 ns185 ns$500.00256 Kbit1983
150 ns250 ns$1500.0064 Kbit1980

Column access
to existing row

Total access time
to a new rowCost per MBCapacityYear

introduced

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 11

Expanding the Data Bus Width
Memory chips typically have a narrow data bus

We can expand the data bus width by a factor of p
Use p RAM chips and feed the same address to all chips

Use the same Chip Select and Read/Write control signals

CS R/W

Address

Data

CS R/W

Address

Data

CS R/W

Address

Data

. . .

Data width = m × p bits

. .
m m

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 12

Increasing Memory Capacity by 2k

A k to 2k decoder is used to select one of the 2k chips
Upper n bits of address is fed to all memory chips

Lower k bits of address are decoded to select one of the 2k chips

CS R/W

Address

Data

CS R/W

Address

Data

CS R/W

Address

Data

. . .

Data width = m bitsm m m
m

k to 2k

decodern

n+k

. . .

k

A
dd

re
ss Data bus of all chips are wired together

Only the selected chip will read/write the data

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 13

Next . . .
Random Access Memory and its Structure

Memory Hierarchy and the need for Cache Memory

The Basics of Caches

Cache Performance and Memory Stall Cycles

Improving Cache Performance

Multilevel Caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 14

Processor-Memory Performance Gap

1980 – No cache in microprocessor

1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

Processor-Memory
Performance Gap:
(grows 50% per year)

P
er

fo
rm

an
ce

“Moore’s Law”

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 15

The Need for a Memory Hierarchy
Widening speed gap between CPU and main memory

Processor operation takes less than 1 ns

Main memory requires more than 50 ns to access

Each instruction involves at least one memory access
One memory access to fetch the instruction

A second memory access for load and store instructions

Memory bandwidth limits the instruction execution rate

Cache memory can help bridge the CPU-memory gap

Cache memory is small in size but fast

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 16

Typical Memory Hierarchy
Registers are at the top of the hierarchy

Typical size < 1 KB

Access time < 0.5 ns

Level 1 Cache (8 – 64 KB)
Access time: 0.5 – 1 ns

L2 Cache (512KB – 8MB)
Access time: 2 – 10 ns

Main Memory (1 – 2 GB)
Access time: 50 – 70 ns

Disk Storage (> 200 GB)
Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

Fa
st

er

B
ig

ge
r

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 17

Principle of Locality of Reference
Programs access small portion of their address space

At any time, only a small set of instructions & data is needed

Temporal Locality (in time)
If an item is accessed, probably it will be accessed again soon

Same loop instructions are fetched each iteration

Same procedure may be called and executed many times

Spatial Locality (in space)
Tendency to access contiguous instructions/data in memory

Sequential execution of Instructions

Traversing arrays element by element

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 18

What is a Cache Memory ?
Small and fast (SRAM) memory technology

Stores the subset of instructions & data currently being accessed

Used to reduce average access time to memory

Caches exploit temporal locality by …
Keeping recently accessed data closer to the processor

Caches exploit spatial locality by …
Moving blocks consisting of multiple contiguous words

Goal is to achieve
Fast speed of cache memory access

Balance the cost of the memory system

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 19

Cache Memories in the Datapath

Address

Rs

Rt Register
File

Imm26

R
w

AL
U

 re
su

lt
BB

A
Im

m
16

R
w

m
u
x

m
u
x

In
st

ru
ct

io
n

m
u
x

m
u
x

Instruction
Cache

Address

Instruction

Inc
PC

00

m
u
x

A
L
U

N
P

C

Ext

Imm16

Next
PC

PCSrc

Data
Cache

Address

Data_in

ALU result

m
u
x

W
rit

eD
at

a
R

w

Rd

Main Memory

Control

Data

Interface between CPU and memory

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 20

Almost Everything is a Cache !
In computer architecture, almost everything is a cache!

Registers: a cache on variables – software managed

First-level cache: a cache on second-level cache

Second-level cache: a cache on memory

Memory: a cache on hard disk
Stores recent programs and their data

Hard disk can be viewed as an extension to main memory

Branch target and prediction buffer
Cache on branch target and prediction information

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 21

Next . . .
Random Access Memory and its Structure

Memory Hierarchy and the need for Cache Memory

The Basics of Caches

Cache Performance and Memory Stall Cycles

Improving Cache Performance

Multilevel Caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 22

Four Basic Questions on Caches
Q1: Where can a block be placed in a cache?

Block placement
Direct Mapped, Set Associative, Fully Associative

Q2: How is a block found in a cache?
Block identification
Block address, tag, index

Q3: Which block should be replaced on a miss?
Block replacement
FIFO, Random, LRU

Q4: What happens on a write?
Write strategy
Write Back or Write Through (with Write Buffer)

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 23

Block Placement: Direct Mapped
Block: unit of data transfer between cache and memory

Direct Mapped Cache:
A block can be placed in exactly one location in the cache

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

In this example:
Cache index =
least significant 3 bits
of Memory address

C
ac

he

M
ai

n
M

em
or

y

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 24

Direct-Mapped Cache
A memory address is divided into

Block address: identifies block in memory

Block offset: to access bytes within a block

A block address is further divided into
Index: used for direct cache access

Tag: most-significant bits of block address

Index = Block Address mod Cache Blocks

Tag must be stored also inside cache
For block identification

A valid bit is also required to indicate
Whether a cache block is valid or not

V Tag Block Data

=

Hit
Data

Tag Index offset

Block Address

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 25

Direct Mapped Cache – cont’d
Cache hit: block is stored inside cache

Index is used to access cache block
Address tag is compared against stored tag
If equal and cache block is valid then hit
Otherwise: cache miss

If number of cache blocks is 2n

n bits are used for the cache index

If number of bytes in a block is 2b

b bits are used for the block offset

If 32 bits are used for an address
32 – n – b bits are used for the tag

Cache data size = 2n+b bytes

V Tag Block Data

=

Hit
Data

Tag Index offset

Block Address

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 26

Mapping an Address to a Cache Block
Example

Consider a direct-mapped cache with 256 blocks

Block size = 16 bytes

Compute tag, index, and byte offset of address: 0x01FFF8AC

Solution
32-bit address is divided into:

4-bit byte offset field, because block size = 24 = 16 bytes

8-bit cache index, because there are 28 = 256 blocks in cache

20-bit tag field

Byte offset = 0xC = 12 (least significant 4 bits of address)

Cache index = 0x8A = 138 (next lower 8 bits of address)

Tag = 0x01FFF (upper 20 bits of address)

Tag Index offset

4820

Block Address

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 27

Example on Cache Placement & Misses
Consider a small direct-mapped cache with 32 blocks

Cache is initially empty, Block size = 16 bytes

The following memory addresses (in decimal) are referenced:

1000, 1004, 1008, 2548, 2552, 2556.

Map addresses to cache blocks and indicate whether hit or miss

Solution:
1000 = 0x3E8 cache index = 0x1E Miss (first access)
1004 = 0x3EC cache index = 0x1E Hit
1008 = 0x3F0 cache index = 0x1F Miss (first access)
2548 = 0x9F4 cache index = 0x1F Miss (different tag)
2552 = 0x9F8 cache index = 0x1F Hit
2556 = 0x9FC cache index = 0x1F Hit

Tag Index offset

4523

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 28

Fully Associative Cache
A block can be placed anywhere in cache ⇒ no indexing
If m blocks exist then

m comparators are needed to match tag

Cache data size = m × 2b bytes

m-way associative

Address

Tag offset

DataHit

= = = =

V Tag Block DataV Tag Block DataV Tag Block DataV Tag Block Data

mux

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 29

Set-Associative Cache
A set is a group of blocks that can be indexed

A block is first mapped onto a set
Set index = Block address mod Number of sets in cache

If there are m blocks in a set (m-way set associative) then
m tags are checked in parallel using m comparators

If 2n sets exist then set index consists of n bits

Cache data size = m × 2n+b bytes (with 2b bytes per block)
Without counting tags and valid bits

A direct-mapped cache has one block per set (m = 1)

A fully-associative cache has one set (2n = 1 or n = 0)

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 30

Set-Associative Cache Diagram

m-way set-associative

V Tag Block DataV Tag Block DataV Tag Block DataV Tag Block Data

Address Tag Index offset

Data

= = = =

muxHit

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 31

Write Policy
Write Through:

Writes update cache and lower-level memory
Cache control bit: only a Valid bit is needed
Memory always has latest data, which simplifies data coherency
Can always discard cached data when a block is replaced

Write Back:
Writes update cache only
Cache control bits: Valid and Modified bits are required
Modified cached data is written back to memory when replaced
Multiple writes to a cache block require only one write to memory
Uses less memory bandwidth than write-through and less power
However, more complex to implement than write through

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 32

Write Miss Policy
What happens on a write miss?

Write Allocate:
Allocate new block in cache

Write miss acts like a read miss, block is fetched and updated

No Write Allocate:
Send data to lower-level memory

Cache is not modified

Typically, write back caches use write allocate
Hoping subsequent writes will be captured in the cache

Write-through caches often use no-write allocate
Reasoning: writes must still go to lower level memory

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 33

Write Buffer
Decouples the CPU write from the memory bus writing

Permits writes to occur without stall cycles until buffer is full

Write-through: all stores are sent to lower level memory
Write buffer eliminates processor stalls on consecutive writes

Write-back: modified blocks are written when replaced
Write buffer is used for evicted blocks that must be written back

The address and modified data are written in the buffer
The write is finished from the CPU perspective

CPU continues while the write buffer prepares to write memory

If buffer is full, CPU stalls until buffer has an empty entry

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 34

What Happens on a Cache Miss?
Cache sends a miss signal to stall the processor

Decide which cache block to allocate/replace
One choice only when the cache is directly mapped

Multiple choices for set-associative or fully-associative cache

Transfer the block from lower level memory to this cache
Set the valid bit and the tag field from the upper address bits

If block to be replaced is modified then write it back
Modified block is moved into a Write Buffer

Otherwise, block to be replaced can be simply discarded

Restart the instruction that caused the cache miss

Miss Penalty: clock cycles to process a cache miss

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 35

Replacement Policy
Which block to be replaced on a cache miss?

No selection alternatives for direct-mapped caches

m blocks per set to choose from for associative caches

Random replacement
Candidate blocks are randomly selected

One counter for all sets (0 to m – 1): incremented on every cycle

On a cache miss replace block specified by counter

First In First Out (FIFO) replacement
Replace oldest block in set

One counter per set (0 to m – 1): specifies oldest block to replace

Counter is incremented on a cache miss

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 36

Replacement Policy – cont’d
Least Recently Used (LRU)

Replace block that has been unused for the longest time

Order blocks within a set from least to most recently used

Update ordering of blocks on each cache hit

With m blocks per set, there are m! possible permutations

Pure LRU is too costly to implement when m > 2
m = 2, there are 2 permutations only (a single bit is needed)

m = 4, there are 4! = 24 possible permutations

LRU approximation are used in practice

For large m > 4,

Random replacement can be as effective as LRU

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 37

Next . . .
Random Access Memory and its Structure

Memory Hierarchy and the need for Cache Memory

The Basics of Caches

Cache Performance and Memory Stall Cycles

Improving Cache Performance

Multilevel Caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 38

Hit Rate and Miss Rate
Hit Rate = Hits / (Hits + Misses)

Miss Rate = Misses / (Hits + Misses)

I-Cache Miss Rate = Miss rate in the Instruction Cache

D-Cache Miss Rate = Miss rate in the Data Cache

Example:
Out of 1000 instructions fetched, 150 missed in the I-Cache

25% are load-store instructions, 50 missed in the D-Cache

What are the I-cache and D-cache miss rates?

I-Cache Miss Rate = 150 / 1000 = 15%

D-Cache Miss Rate = 50 / (25% × 1000) = 50 / 250 = 20%

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 39

The processor stalls on a Cache miss
When fetching instructions from the Instruction Cache (I-cache)

When loading or storing data into the Data Cache (D-cache)

Memory stall cycles = Combined Misses × Miss Penalty

Miss Penalty: clock cycles to process a cache miss

Combined Misses = I-Cache Misses + D-Cache Misses

I-Cache Misses = I-Count × I-Cache Miss Rate

D-Cache Misses = LS-Count × D-Cache Miss Rate

LS-Count (Load & Store) = I-Count × LS Frequency

Cache misses are often reported per thousand instructions

Memory Stall Cycles

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 40

Memory Stall Cycles Per Instruction
Memory Stall Cycles Per Instruction =

I-Cache Miss Rate × Miss Penalty +

LS Frequency × D-Cache Miss Rate × Miss Penalty

Combined Misses Per Instruction =

I-Cache Miss Rate + LS Frequency × D-Cache Miss Rate

Therefore, Memory Stall Cycles Per Instruction =

Combined Misses Per Instruction × Miss Penalty

Miss Penalty is assumed equal for I-cache & D-cache

Miss Penalty is assumed equal for Load and Store

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 41

Example on Memory Stall Cycles
Consider a program with the given characteristics

Instruction count (I-Count) = 106 instructions
30% of instructions are loads and stores
D-cache miss rate is 5% and I-cache miss rate is 1%
Miss penalty is 100 clock cycles for instruction and data caches
Compute combined misses per instruction and memory stall cycles

Combined misses per instruction in I-Cache and D-Cache
1% + 30% × 5% = 0.025 combined misses per instruction
Equal to 25 misses per 1000 instructions

Memory stall cycles
0.025 × 100 (miss penalty) = 2.5 stall cycles per instruction
Total memory stall cycles = 106 × 2.5 = 2,500,000

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 42

CPU Time with Memory Stall Cycles

CPIPerfectCache = CPI for ideal cache (no cache misses)

CPIMemoryStalls = CPI in the presence of memory stalls

Memory stall cycles increase the CPI

CPU Time = I-Count × CPIMemoryStalls × Clock Cycle

CPIMemoryStalls = CPIPerfectCache + Mem Stalls per Instruction

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 43

Example on CPI with Memory Stalls
A processor has CPI of 1.5 without any memory stalls

Average cache miss rate is 2% for instruction and data
50% of instructions are loads and stores
Cache miss penalty is 100 clock cycles for I-cache and D-cache

What is the impact on the CPI?
Answer:
Mem Stalls per Instruction =
CPIMemoryStalls =
CPIMemoryStalls / CPIPerfectCache =
Processor is 3 times slower due to memory stall cycles
CPINoCache =

Instruction data

0.02×100 + 0.5×0.02×100 = 3
1.5 + 3 = 4.5 cycles per instruction

4.5 / 1.5 = 3

1.5 + (1 + 0.5) × 100 = 151.5 (a lot worse)

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 44

Designing Memory to Support Caches

Bus

CPU

Memory

Cache

O
ne

-w
or

d-
w

id
e

M
em

or
y

O
rg

an
iz

at
io

n

Cache

Multiplexer

Bus

Memory

Wide Memory Organization

CPU

Memory

bank 0

Memory

bank 1

Memory

bank 2

Memory

bank 3

Interleaved Memory Organization

Bus

CPU

Cache

One Word Wide:
CPU, Cache, Bus, and Memory
have word width: 32 or 64 bits

Interleaved:
CPU, Cache, Bus: 1 word
Memory: N independent banks

Wide:
CPU, Mux: 1 word
Cache, Bus, Memory: N words
Alpha: 256 bits
Ultra SPARC: 512 bits

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 45

Memory Interleaving
Memory interleaving is more flexible than wide access

A block address is sent only once to all memory banks

Words of a block are distributed (interleaved) across all banks

Banks are accessed in parallel

Words are transferred one at a time on each bus cycle

Memory

bank 0

Memory

bank 1

Memory

bank 2

Memory

bank 3

Interleaved Memory Organization

Bus

CPU

Cache

Time

Bus
cycle

All banks access
same block address

word 3 (bank 3)

word 2 (bank 2)

word 1 (bank 1)

word 0 (bank 0)

bl
oc

k
ad

dr
es

s

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 46

Estimating the Miss Penalty
Timing Model: Assume the following …

1 memory bus cycle to send address
15 memory bus cycles for DRAM access time
1 memory bus cycle to send data
Cache Block is 4 words

One-Word-Wide Memory Organization
Miss Penalty = 1 + 4 ×15 + 4 × 1 = 65 memory bus cycles
Wide Memory Organization (2-word wide)
Miss Penalty = 1 + 2 ×15 + 2 × 1 = 33 memory bus cycles
Interleaved Memory Organization (4 banks)
Miss Penalty = 1 + 1 ×15 + 4 × 1 = 20 memory bus cycles

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 47

Next . . .
Random Access Memory and its Structure

Memory Hierarchy and the need for Cache Memory

The Basics of Caches

Cache Performance and Memory Stall Cycles

Improving Cache Performance

Multilevel Caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 48

Improving Cache Performance
Average Memory Access Time (AMAT)

AMAT = Hit time + Miss rate * Miss penalty

Used as a framework for optimizations

Reduce the Hit time
Small and simple caches

Reduce the Miss Rate
Larger cache size, higher associativity, and larger block size

Reduce the Miss Penalty
Multilevel caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 49

Small and Simple Caches
Hit time is critical: affects the processor clock rate

Fast clock cycle demands small and simple L1 cache designs

Small cache reduces the indexing time and hit time
Indexing a cache represents a time consuming portion

Tag comparison also adds to this hit time

Direct-mapped overlaps tag check with data transfer
Associative cache uses additional mux and increases hit time

Size of L1 caches has not increased much
L1 caches are the same size on Alpha 21264 and 21364

Same also on UltraSparc II and III, AMD K6 and Athlon

Reduced from 16 KB in Pentium III to 8 KB in Pentium 4

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 50

Larger Size and Higher Associativity
Cache misses:

Compulsory misses are those misses caused by the first reference to a datum

Capacity misses are those misses that occur regardless of associativity or block
size, solely due to the finite size of the cache

Conflict misses are those misses that could have been avoided, had the cache
not evicted an entry earlier.

Increasing cache size reduces capacity misses and conflict misses

Larger cache size spreads out references to more blocks

Drawbacks: longer hit time and higher cost

Larger caches are especially popular as 2nd level caches

Higher associativity also improves miss rates

Eight-way set associative is as effective as a fully associative

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 51

Miss rate versus cache size on the
Integer portion of SPEC CPU2000

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 52

Larger Block Size
Simplest way to reduce miss rate is to increase block size

However, it increases conflict misses if cache is small

Block Size (bytes)

M
is

s
R

at
e

0%

5%

10%

15%

20%

25%

16 32 64 12
8

25
6

1K

4K

16K

64K

256K

Increased Conflict Misses

Reduced
Compulsory
Misses 64-byte

blocks are
common in
L1 caches

128-byte
block are

common in
L2 caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 53

Next . . .
Random Access Memory and its Structure

Memory Hierarchy and the need for Cache Memory

The Basics of Caches

Cache Performance and Memory Stall Cycles

Improving Cache Performance

Multilevel Caches

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 54

Multilevel Caches
Top level cache should be kept small to

Keep pace with processor speed

Adding another cache level
Can reduce the memory gap

Can reduce memory bus loading

Local miss rate
Number of misses in a cache / Memory accesses to this cache

Miss RateL1 for L1 cache, and Miss RateL2 for L2 cache

Global miss rate
Number of misses in a cache / Memory accesses generated by CPU

Miss RateL1 for L1 cache, and Miss RateL1 × Miss RateL2 for L2 cache

Unified L2 Cache

I-Cache D-Cache

Main Memory

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 55

Multilevel Cache Policies
Multilevel Inclusion

L1 cache data is always present in L2 cache

A miss in L1, but a hit in L2 copies block from L2 to L1

A miss in L1 and L2 brings a block into L1 and L2

A write in L1 causes data to be written in L1 and L2

Typically, write-through policy is used from L1 to L2

Typically, write-back policy is used from L2 to main memory

To reduce traffic on the memory bus

A replacement or invalidation in L2 must be propagated to L1

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 56

Multilevel Cache Policies – cont’d
Multilevel exclusion

L1 data is never found in L2 cache – Prevents wasting space

Cache miss in L1, but a hit in L2 results in a swap of blocks

Cache miss in both L1 and L2 brings the block into L1 only

Block replaced in L1 is moved into L2

Example: AMD Athlon

Same or different block size in L1 and L2 caches
Choosing a larger block size in L2 can improve performance

However different block sizes complicates implementation

Pentium 4 has 64-byte blocks in L1 and 128-byte blocks in L2

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 57

Two-Level Cache Performance – 1/2
Average Memory Access Time:

AMAT = Hit TimeL1 + Miss RateL1 × Miss PenaltyL1

Miss Penalty for L1 cache in the presence of L2 cache

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 × Miss PenaltyL2

Average Memory Access Time with a 2nd Level cache:

AMAT = Hit TimeL1 + Miss RateL1 ×

(Hit TimeL2 + Miss RateL2 × Miss PenaltyL2)

Memory Stall Cycles per Instruction =

Memory Access per Instruction × (AMAT – Hit TimeL1)

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 58

Two-Level Cache Performance – 2/2
Average memory stall cycles per instruction =

Memory Access per Instruction × Miss RateL1 ×

(Hit TimeL2 + Miss RateL2 × Miss PenaltyL2)

Average memory stall cycles per instruction =

Misses per instructionL1 × Hit TimeL2 +

Misses per instructionL2 × Miss PenaltyL2

Misses per instructionL1 =

MEM access per instruction × Miss RateL1

Misses per instructionL2 =

MEM access per instruction × Miss RateL1 × Miss RateL2

Memory ICS 233 – KFUPM © Muhamed Mudawar slide 59

Example on Two-Level Caches
Problem:

Miss RateL1 = 4%, Miss RateL2 = 25%
Hit time of L1 cache is 1 cycle and of L2 cache is 10 cycles
Miss penalty from L2 cache to memory is 100 cycles
Memory access per instruction = 1.25 (25% data accesses)
Compute AMAT and memory stall cycles per instruction

Solution:
AMAT = 1 + 4% × (10 + 25% × 100) = 2.4 cycles
Misses per instruction in L1 = 4% × 1.25 = 5%
Misses per instruction in L2 = 4% × 25% × 1.25 = 1.25%
Memory stall cycles per instruction = 5% × 10 + 1.25% × 100 = 1.75
Can be also obtained as: (2.4 – 1) × 1.25 = 1.75 cycles

