Floating Point Arithmetic

ICS 233

Computer Architecture and Assembly Language Dr. Aiman El-Maleh

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals [Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Outline

- Floating-Point Numbers
- ✤ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

The World is Not Just Integers

- Programming languages support numbers with fraction
 - ♦ Called floating-point numbers
 - \diamond Examples:
 - 3.14159265... (π)

2.71828... (*e*)

0.00000001 or 1.0×10^{-9} (seconds in a nanosecond)

86,400,000,000,000 or 8.64 × 10¹³ (nanoseconds in a day)

last number is a large integer that cannot fit in a 32-bit integer

- We use a scientific notation to represent
 - \diamond Very small numbers (e.g. 1.0 × 10⁻⁹)
 - \diamond Very large numbers (e.g. 8.64 × 10¹³)
 - $\Rightarrow \text{ Scientific notation: } \pm d_{\bullet}f_{1}f_{2}f_{3}f_{4} \dots \times 10^{\pm e_{1}e_{2}e_{3}}$

Floating-Point Numbers

Examples of floating-point numbers in base 10 …

 \diamond 5.341×10³, 0.05341×10⁵, -2.013×10⁻¹, -201.3×10⁻³

Examples of floating-point numbers in base 2 ...

- ♦ 1.00101×2²³, 0.0100101×2²⁵, -1.101101×2⁻³, -1101.101×2⁻⁶
 ♦ Even events are location of a simple for elevity
- ♦ Exponents are kept in decimal for clarity

♦ The binary number $(1101.101)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-3} = 13.625$

- Floating-point numbers should be normalized
 - ♦ Exactly one non-zero digit should appear before the point
 - In a decimal number, this digit can be from 1 to 9
 - In a binary number, this digit should be 1
 - \diamond Normalized FP Numbers: 5.341×10³ and -1.101101×2⁻³
 - ♦ NOT Normalized: 0.05341×10⁵ and -1101.101×2⁻⁶

Floating-Point Representation

✤ A floating-point number is represented by the triple

- ♦ S is the Sign bit (0 is positive and 1 is negative)
 - Representation is called sign and magnitude
- ♦ *E* is the Exponent field (signed)
 - Very large numbers have large positive exponents
 - Very small close-to-zero numbers have negative exponents
 - More bits in exponent field increases range of values
- ♦ *F* is the Fraction field (fraction after binary point)
 - More bits in fraction field improves the precision of FP numbers

S Exponent

Fraction

Value of a floating-point number = $(-1)^{S} \times val(F) \times 2^{val(E)}$

Next . . .

- Floating-Point Numbers
- IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

IEEE 754 Floating-Point Standard

Found in virtually every computer invented since 1980

- ♦ Simplified porting of floating-point numbers
- ♦ Unified the development of floating-point algorithms
- ♦ Increased the accuracy of floating-point numbers
- Single Precision Floating Point Numbers (32 bits)
 - ♦ 1-bit sign + 8-bit exponent + 23-bit fraction

S Exponent⁸ Fraction²³

Double Precision Floating Point Numbers (64 bits)

♦ 1-bit sign + 11-bit exponent + 52-bit fraction

S Exponent¹¹ Fraction⁵² (continued)

Floating	Point
----------	-------

Normalized Floating Point Numbers

✤ For a normalized floating point number (S, E, F)

 $F = f_1 f_2 f_3 f_4 \dots$ Significand is equal to $(1.F)_2 = (1.f_1f_2f_3f_4...)_2$

 \diamond IEEE 754 assumes hidden 1. (not stored) for normalized numbers

♦ Significand is 1 bit longer than fraction

Ε

Value of a Normalized Floating Point Number is

 $\begin{aligned} (-1)^{S} \times (\mathbf{1}.F)_{2} \times 2^{\text{val}(E)} \\ (-1)^{S} \times (\mathbf{1}.f_{1}f_{2}f_{3}f_{4}\dots)_{2} \times 2^{\text{val}(E)} \\ (-1)^{S} \times (\mathbf{1} + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}\dots)_{2} \times 2^{\text{val}(E)} \end{aligned}$

 $(-1)^{S}$ is 1 when S is 0 (positive), and -1 when S is 1 (negative)

Biased Exponent Representation

✤ How to represent a signed exponent? Choices are …

- ♦ Sign + magnitude representation for the exponent
- ♦ Two's complement representation
- ♦ Biased representation
- ✤ IEEE 754 uses biased representation for the exponent

 \diamond Value of exponent = val(E) = E – Bias (Bias is a constant)

Recall that exponent field is 8 bits for single precision

 \Rightarrow *E* can be in the range 0 to 255

 \Rightarrow *E* = 0 and *E* = 255 are reserved for special use (discussed later)

 \Rightarrow *E* = 1 to 254 are used for normalized floating point numbers

♦ Bias = 127 (half of 254), val(E) = E - 127

 \Rightarrow val(*E*=1) = -126, val(*E*=127) = 0, val(*E*=254) = 127

Biased Exponent - Cont'd

For double precision, exponent field is 11 bits

 \diamond *E* can be in the range 0 to 2047

 \Rightarrow *E* = 0 and *E* = 2047 are reserved for special use

eerce E = 1 to 2046 are used for normalized floating point numbers

 \Rightarrow Bias = 1023 (half of 2046), val(*E*) = *E* - 1023

 \Rightarrow val(*E*=1) = -1022, val(*E*=1023) = 0, val(*E*=2046) = 1023

Value of a Normalized Floating Point Number is

 $(-1)^{S} \times (1.F)_{2} \times 2^{E-\text{Bias}}$ $(-1)^{S} \times (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{E-\text{Bias}}$ $(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4}...)_{2} \times 2^{E-\text{Bias}}$

Examples of Single Precision Float

What is the decimal value of this Single Precision float?

Solution:

- \Rightarrow Sign = 1 is negative
- \Rightarrow Exponent = (01111100)₂ = 124, *E* bias = 124 127 = -3
- \Rightarrow Significand = (1.0100 ... 0)₂ = 1 + 2⁻² = 1.25 (1. is implicit)
- \Rightarrow Value in decimal = -1.25 × 2⁻³ = -0.15625
- What is the decimal value of?

Solution: $* \text{ Value in decimal} = +(1.01001100 \dots 0)_2 \times 2^{130-127} = (1.01001100 \dots 0)_2 \times 2^3 = (1010.01100 \dots 0)_2 = 10.375$

Examples of Double Precision Float

What is the decimal value of this Double Precision float ?

 0
 1
 0
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Solution:

- \Rightarrow Value of exponent = $(1000000101)_2$ Bias = 1029 1023 = 6
- ♦ Value of double float = $(1.00101010 \dots 0)_2 \times 2^6 (1. is implicit) = (1001010.10 \dots 0)_2 = 74.5$
- What is the decimal value of ?

 1
 0
 1
 1
 1
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

✤ Do it yourself! (answer should be -1.5 × 2⁻⁷ = -0.01171875)

Floating Point

Converting FP Decimal to Binary

Convert –0.8125 to binary in single and double precision

Solution:

♦ Fraction bits can be obtained using multiplication by 2

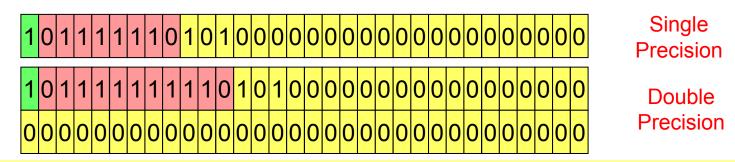
- 0.8125 × 2 = 1.625
- 0.625 × 2 = 1.25
- 0.25 × 2 = 0.5
- 0.5 × 2 = 1.0

$$0.8125 = (0.1101)_2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} = \frac{13}{16}$$

• Stop when fractional part is 0

 \Rightarrow Fraction = (0.1101)₂ = (1.101)₂ × 2⁽¹⁾(Normalized)</sup>

 \Rightarrow Exponent = (-1) + Bias = 126 (single precision) and 1022 (double)



Largest Normalized Float

- What is the Largest normalized float?
- Solution for Single Precision:

 \Rightarrow Exponent – bias = 254 – 127 = 127 (largest exponent for SP)

 \Rightarrow Significand = (1.111 ... 1)₂ = almost 2

♦ Value in decimal ≈ 2 × 2^{127} ≈ 2^{128} ≈ 3.4028 ... × 10³⁸

Solution for Double Precision:

 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

♦ Value in decimal ≈ 2 × 2^{1023} ≈ 2^{1024} ≈ 1.79769 ... × 10³⁰⁸

Overflow: exponent is too large to fit in the exponent field

Smallest Normalized Float

What is the smallest (in absolute value) normalized float?

Solution for Single Precision:

 \Rightarrow Exponent – bias = 1 – 127 = –126 (smallest exponent for SP)

 \Rightarrow Significand = (1.000 ... 0)₂ = 1

 \diamond Value in decimal = 1 × 2⁻¹²⁶ = 1.17549 ... × 10⁻³⁸

Solution for Double Precision:

 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 \diamond Value in decimal = 1 × 2⁻¹⁰²² = 2.22507 ... × 10⁻³⁰⁸

Underflow: exponent is too small to fit in exponent field

Floating Point

Zero, Infinity, and NaN

Zero

- ♦ Exponent field E = 0 and fraction F = 0
- \diamond +0 and –0 are possible according to sign bit S

✤ Infinity

- \diamond Infinity is a special value represented with maximum *E* and *F* = 0
 - For single precision with 8-bit exponent: maximum *E* = 255
 - For double precision with 11-bit exponent: maximum *E* = 2047
- \diamond Infinity can result from overflow or division by zero
- \diamond + ∞ and - ∞ are possible according to sign bit S

✤ NaN (Not a Number)

- \Rightarrow NaN is a special value represented with maximum *E* and $F \neq 0$
- ♦ Result from exceptional situations, such as 0/0 or sqrt(negative)
- \diamond Operation on a NaN results is NaN: Op(X, NaN) = NaN

Denormalized Numbers

✤ IEEE standard uses denormalized numbers to …

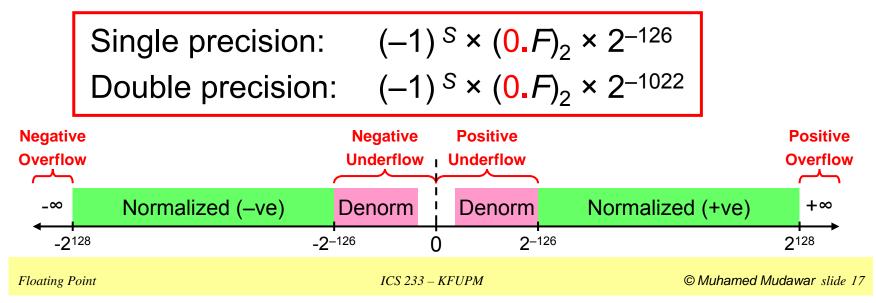
 \diamond Fill the gap between 0 and the smallest normalized float

♦ Provide gradual underflow to zero

\diamond Denormalized: exponent field *E* is 0 and fraction $F \neq 0$

Implicit 1. before the fraction now becomes 0. (not normalized)

✤ Value of denormalized number (S, 0, F)



Special Value Rules

Operation	Result
n / $\pm\infty$	±0
$\pm\infty$ X $\pm\infty$	$\pm\infty$
nonzero / 0	$\pm\infty$
$\infty + \infty$	∞ (similar for - ∞)
±0 / ±0	NaN
$\infty - \infty$	NaN (similar for - ∞)
$\pm \infty / \pm \infty$	NaN
$\pm \infty \times \pm 0$	NaN
NaN op anything	NaN

Floating-Point Comparison

✤ IEEE 754 floating point numbers are ordered

- ♦ Because exponent uses a biased representation …
 - Exponent value and its binary representation have same ordering
- ♦ Placing exponent before the fraction field orders the magnitude
 - Larger exponent ⇒ larger magnitude
 - For equal exponents, Larger fraction \Rightarrow larger magnitude

•
$$0 < (0.F)_2 \times 2^{E_{min}} < (1.F)_2 \times 2^{E_{-Bias}} < \infty (E_{min} = 1 - Bias)$$

 $\diamond\,$ Because sign bit is most significant \Rightarrow quick test of signed <

Integer comparator can compare magnitudes

$$X = (E_X, F_X) \rightarrow \text{Integer} \rightarrow X < Y$$

Magnitude
$$Y = (E_Y, F_Y) \rightarrow \text{Comparator} \rightarrow X > Y$$

Floating Point

Summary of IEEE 754 Encoding

Single-Precision	Exponent = 8	Fraction = 23	Value
Normalized Number	1 to 254	Anything	$\pm (1.F)_2 \times 2^{E-127}$
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-126}$
Zero	0	0	± 0
Infinity	255	0	± ∞
NaN	255	nonzero	NaN

Double-Precision	Exponent = 11	Fraction = 52	Value
Normalized Number	1 to 2046	Anything	$\pm (1.F)_2 \times 2^{E-1023}$
Denormalized Number	0	nonzero	± (0. <i>F</i>) ₂ × 2 ⁻¹⁰²²
Zero	0	0	± 0
Infinity	2047	0	± ∞
NaN	2047	nonzero	NaN

Floating Point

Simple 6-bit Floating Point Example

✤ 6-bit floating point representation

- ♦ Sign bit is the most significant bit
- \diamond Next 3 bits are the exponent with a bias of 3
- \diamond Last 2 bits are the fraction

Same general form as IEEE

- ♦ Normalized, denormalized
- ♦ Representation of 0, infinity and NaN
- ♦ Value of normalized numbers $(-1)^{S} \times (1_{F})_{2} \times 2^{E-3}$
- ♦ Value of denormalized numbers $(-1)^{S} \times (0.F)_{2} \times 2^{-2}$

Exponent³ Fraction² S

Values Related to Exponent

Exp.	exp	E	2 ^E	
0	000	-2	1⁄4	Denormalized
1	001	-2	1⁄4	
2	010	-1	1/2	
3	011	0	1	
4	100	1	2	> Normalized
5	101	2	4	
6	110	3	8	
7	111	n/a		Inf or NaN

Dynamic Range of Values

S	exp	frac	E	value	
0	000	00	-2	0	
0	000	01	-2	1/4*1/4=1/16	smallest denormalized
0	000	10	-2	2/4*1/4=2/16	
0	000	11	-2	3/4*1/4=3/16	largest denormalized
0	001	00	-2	4/4*1/4=4/16=1/4=0.25	smallest normalized
0	001	01	-2	5/4*1/4=5/16	
0	001	10	-2	6/4*1/4=6/16	
0	001	11	-2	7/4*1/4=7/16	
0	010	00	-1	4/4*2/4=8/16=1/2=0.5	
0	010	01	-1	5/4*2/4=10/16	
0	010	10	-1	6/4*2/4=12/16=0.75	
0	010	11	-1	7/4*2/4=14/16	

Floating Point

Dynamic Range of Values

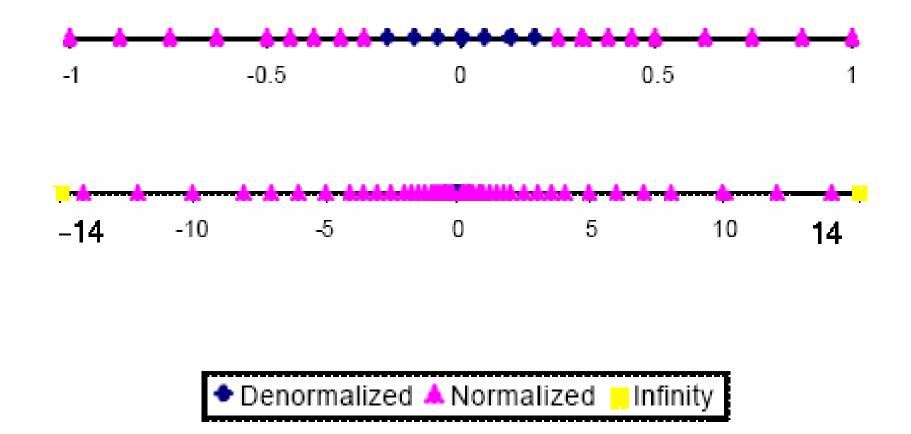
S	exp	frac	Е	value
0	011	00	0	4/4*4/4=16/16=1
0	011	01	0	5/4*4/4=20/16=1.25
0	011	10	0	6/4*4/4=24/16=1.5
0	011	11	0	7/4*4/4=28/16=1.75
0	100	00	1	4/4*8/4=32/16=2
0	100	01	1	5/4*8/4=40/16=2.5
0	100	10	1	6/4*8/4=48/16=3
0	100	11	1	7/4*8/4=56/16=3.5
0	101	00	2	4/4*16/4=64/16=4
0	101	01	2	5/4*16/4=80/16=5
0	101	10	2	6/4*16/4=96/16=6
0	101	11	2	7/4*16/4=112/16=7

Floating Point

Dynamic Range of Values

S	exp	frac	Е	value	
0	110	00	3	4/4*32/4=128/16=8	
0	110	01	3	5/4*32/4=160/16=10	
0	110	10	3	6/4*32/4=192/16=12	
0	110	11	3	7/4*32/4=224/16=14	largest normalized
0	111	00		∞	
0	111	01		NaN	
0	111	10		NaN	
0	111	11		NaN	

Distribution of Values



ICS 233 – KFUPM

Next . . .

- Floating-Point Numbers
- ✤ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

Floating Point Addition Example

• Consider adding: $(1.111)_2 \times 2^{-1} + (1.011)_2 \times 2^{-3}$

- ♦ For simplicity, we assume 4 bits of precision (or 3 bits of fraction)
- Cannot add significands ... Why?
 - ♦ Because exponents are not equal
- How to make exponents equal?
 - Shift the significand of the lesser exponent right until its exponent matches the larger number
- $(1.011)_2 \times 2^{-3} = (0.1011)_2 \times 2^{-2} = (0.01011)_2 \times 2^{-1}$

♦ Difference between the two exponents = -1 - (-3) = 2

 \diamond So, shift right by 2 bits

Now, add the significands:

$$\begin{array}{c} + 1.111 \\ + 0.01011 \\ \hline \\ Carry \rightarrow 10.00111 \end{array}$$

Addition Example - cont'd

So, $(1.111)_2 \times 2^{-1} + (1.011)_2 \times 2^{-3} = (10.00111)_2 \times 2^{-1}$

• However, result $(10.00111)_2 \times 2^{-1}$ is NOT normalized

* Normalize result: $(10.00111)_2 \times 2^{-1} = (1.000111)_2 \times 2^{0}$

 \diamond In this example, we have a carry

♦ So, shift right by 1 bit and increment the exponent

Round the significand to fit in appropriate number of bits

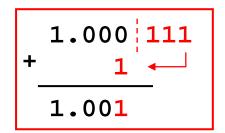
 \diamond We assumed 4 bits of precision or 3 bits of fraction

♦ Round to nearest: $(1.000111)_2 \approx (1.001)_2$

♦ Renormalize if rounding generates a carry

Detect overflow / underflow

♦ If exponent becomes too large (overflow) or too small (underflow)



Floating Point Subtraction Example

* Consider: $(1.000)_2 \times 2^{-3} - (1.000)_2 \times 2^2$

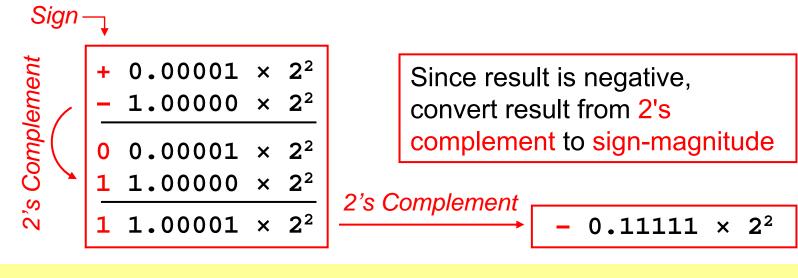
♦ We assume again: 4 bits of precision (or 3 bits of fraction)

Shift significand of the lesser exponent right

 \Rightarrow Difference between the two exponents = 2 - (-3) = 5

♦ Shift right by 5 bits: $(1.000)_2 \times 2^{-3} = (0.00001000)_2 \times 2^2$

Convert subtraction into addition to 2's complement



Floating Point

Subtraction Example - cont'd

So, $(1.000)_2 \times 2^{-3} - (1.000)_2 \times 2^2 = -0.11111_2 \times 2^2$

* Normalize result: $-0.11111_2 \times 2^2 = -1.1111_2 \times 2^1$

 $\diamond\,$ For subtraction, we can have leading zeros

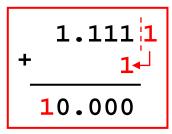
 \diamond Count number z of leading zeros (in this case z = 1)

 \diamond Shift left and decrement exponent by z

Round the significand to fit in appropriate number of bits

♦ We assumed 4 bits of precision or 3 bits of fraction

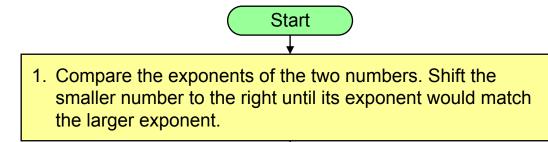
- ♦ Round to nearest: $(1.1111)_2 \approx (10.000)_2$
- Renormalize: rounding generated a carry



 $-1.1111_2 \times 2^1 \approx -10.000_2 \times 2^1 = -1.000_2 \times 2^2$

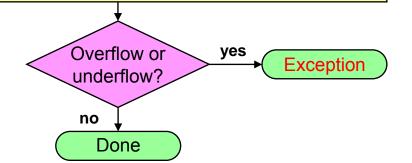
♦ Result would have been accurate if more fraction bits are used

Floating Point Addition / Subtraction



2. Add / Subtract the significands according to the sign bits.

- 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry



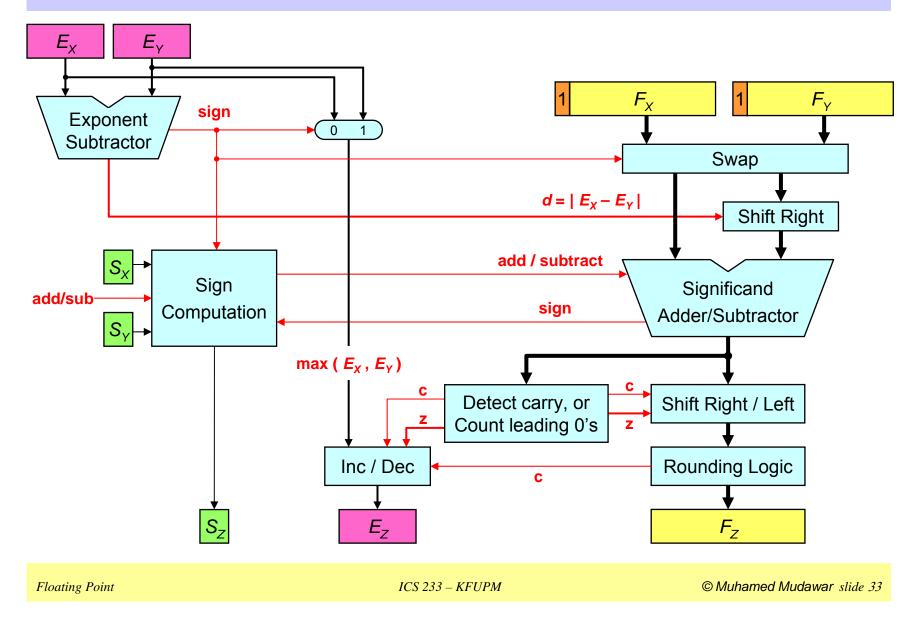
Shift significand right by $d = |E_x - E_y|$

Add significands when signs of X and Y are identical, Subtract when different X - Y becomes X + (-Y)

Normalization shifts right by 1 if there is a carry, or shifts left by the number of leading zeros in the case of subtraction

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Floating Point Adder Block Diagram



Next . . .

- Floating-Point Numbers
- ✤ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

Floating Point Multiplication Example

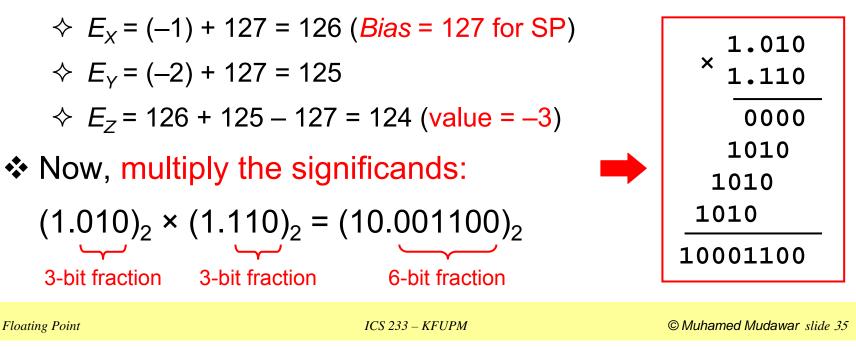
♦ Consider multiplying: $1.010_2 \times 2^{-1}$ by $-1.110_2 \times 2^{-2}$

♦ As before, we assume 4 bits of precision (or 3 bits of fraction)

Unlike addition, we add the exponents of the operands

♦ Result exponent value = (-1) + (-2) = -3

↔ Using the biased representation: $E_Z = E_X + E_Y - Bias$



Multiplication Example - cont'd

- Since sign $S_X \neq S_Y$, sign of product $S_Z = 1$ (negative)
- So, $1.010_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} = -10.001100_2 \times 2^{-3}$
- However, result: $-10.001100_2 \times 2^{-3}$ is NOT normalized
- * Normalize: 10. $001100_2 \times 2^{-3} = 1.0001100_2 \times 2^{-2}$

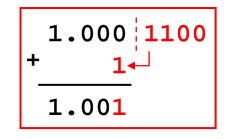
♦ Shift right by 1 bit and increment the exponent

♦ At most 1 bit can be shifted right ... Why?

Round the significand to nearest:

 $1.0001100_2 \approx 1.001_2$ (3-bit fraction)

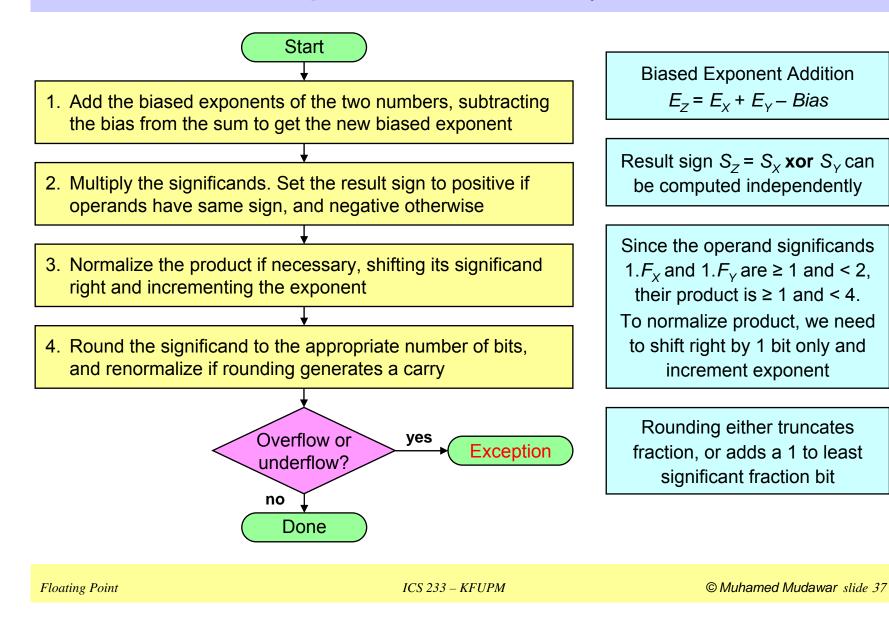
Result $\approx -1.001_2 \times 2^{-2}$ (normalized)



Detect overflow / underflow

 \diamond No overflow / underflow because exponent is within range

Floating Point Multiplication



Next . . .

- Floating-Point Numbers
- ✤ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

Extra Bits to Maintain Precision

Floating-point numbers are approximations for …

♦ Real numbers that they cannot represent

Infinite variety of real numbers exist between 1.0 and 2.0

 \diamond However, exactly 2²³ fractions can be represented in SP, and

♦ Exactly 2⁵² fractions can be represented in DP (double precision)

Extra bits are generated in intermediate results when …

♦ Shifting and adding/subtracting a *p*-bit significand

 \diamond Multiplying two *p*-bit significands (product can be 2*p* bits)

But when packing result fraction, extra bits are discarded

- We only need few extra bits in an intermediate result
 - ♦ Minimizing hardware but without compromising precision

Alignment and Normalization Issues

During alignment

- ♦ smaller exponent argument gets significand right shifted
- \diamond need for extra precision in the FPU
- $\diamond\,$ the question is how much extra do you need?

During normalization

 \diamond a left or right shift of the significand may occur

During the rounding step

 \diamond extra internal precision bits get dropped

Time to consider how many extra bits we need

- \diamond to do rounding properly
- ♦ to compensate for what happens during alignment and normalization

Guard Bit

- When we shift bits to the right, those bits are lost.
- We may need to shift the result to the left for normalization.
- Keeping the bits shifted to the right will make the result more accurate when result is shifted to the left.
- ✤ Questions:
 - ♦ Which operation will require shifting the result to the left?
 - What is the maximum number of bits needed to be shifted left in the result?
- If the number of right shifts for alignment >1, then the maximum number of left shifts required for normalization is 1.

For Effective Addition

Result of Addition

- \diamond either normalized
- ♦ or generates 1 additional integer bit
 - hence right shift of 1
 - need for f+1 bits
 - extra bit called rounding bit is used for rounding the result

✤ Alignment throws a bunch of bits to the right

- \diamond need to know whether they were all 0 or not for proper rounding
- ♦ hence 1 more bit called the sticky bit
 - sticky bit value is the OR of the discarded bits

For Effective Subtraction

There are 2 subcases

- $\diamond\,$ if the difference in the two exponents is larger than 1
 - alignment produces a mantissa with more than 1 leading 0
 - hence result is either normalized or has one leading 0
 - in this case a left shift will be required in normalization
 - an extra bit is needed for the fraction called the guard bit
 - also during subtraction a borrow may happen at position f+2
 - this borrow is determined by the sticky bit
- \diamond the difference of the two exponents is 0 or 1
 - in this case the result may have many more than 1 leading 0
 - but at most one nonzero bit was shifted during normalization
 - hence only one additional bit is needed for the subtraction result
 - borrow to the extra bit may happen

Extra Bits Needed

Three bits are added called Guard, Round, Sticky

- $\diamond\,$ Reduce the hardware and still achieve accurate arithmetic
- ♦ As if result significand was computed exactly and rounded

Internal Representation:

s exp frac G R	S
----------------	---

Guard Bit

Guard bit: guards against loss of a significant bit

♦ Only one guard bit is needed to maintain accuracy of result

- ♦ Shifted left (if needed) during normalization as last fraction bit
- Example on the need of a guard bit:
 - $1.000000010110001001101 \times 2^{5}$
- 1.000000000000011011010 × 2^{-2} (subtraction)
 - $1.000000010110001001101 \times 2^{5}$

1.0000000101100010001101 × 2^{5}_{---} Guard bit – do not discard

- **1** 1.111110111111111110 ($\hat{0}$) 100110 × 2⁵ (2's complement)
- 0 0.1111111010110001001011 (0) 100110 × 2⁵ (add significands)
- + 1.1111110101100010010110^{\checkmark} 1 001100 × 2⁴ (normalized)

Round and Sticky Bits

Two extra bits are needed for rounding

♦ Rounding performed after normalizing a result significand

♦ Round bit: appears after the guard bit

Sticky bit: appears after the round bit (OR of all additional bits)

Consider the same example of previous slide:

If the three Extra Bits not Used

- $1.000000010110001001101 \times 2^{5}$
- 1.0000000000000011011010 $\times 2^{-2}$ (subtraction)
 - $1.000000010110001001101 \times 2^{5}$
- - $1.000000010110001001101 \times 2^{5}$
- **1** 1.111110111111111111 × 2⁵ (2's complement)
- **0** 0.11111110101100010001100 \times 2⁵ (add significands)
- + 1.11111101011000100011000 × 2⁴ (normalized without GRS)
- + 1.1111110101100010010110 × 2⁴ (normalized with GRS)
- + 1.1111110101100010010111 × 2⁴ (With GRS after rounding)

Four Rounding Modes

- ♦ Normalized result has the form: **1**. f_1 f_2 ... f_l g r s
 - ♦ The guard bit g, round bit r and sticky bit s appear after the last fraction bit f_l
- ✤ IEEE 754 standard specifies four modes of rounding
- Round to Nearest Even: default rounding mode
 - ♦ Increment result if: g=1 and r or s = (1) or $(g=1 \text{ and } r \text{ s} = (00)^{\circ} \text{ and } f_{1} = (1)^{\circ}$
 - \diamond Otherwise, truncate result significand to **1**. $f_1 f_2 \dots f_l$
- ✤ Round toward +∞: result is rounded up
 - ♦ Increment result if sign is positive and g or r or s = 1
- ✤ Round toward –∞: result is rounded down
 - ♦ Increment result if sign is negative and g or r or s = `1`
- Round toward 0: always truncate result

Illustration of Rounding Modes

Rounding modes illustrated with \$ rounding

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
 Zero 	\$1	\$1	\$1	\$2	-\$1
 Round down () 	\$1	\$1	\$1	\$2	-\$2
 Round up (+∞) 	\$2	\$2	\$2	\$3	-\$1
 Nearest Even (default) 	\$1	\$2	\$2	\$2	-\$2

✤ Notes

- ♦ Round down: rounded result is close to but no greater than true result.
- ♦ Round up: rounded result is close to but no less than true result.

Closer Look at Round to Even

- Set of positive numbers will consistently be over- or underestimated
- ✤ All other rounding modes are statistically biased
- When exactly halfway between two possible values
 - $\diamond~$ Round so that least significant digit is even
- E.g., round to nearest hundredth
 - ♦ 1.2349999 1.23 (Less than half way)
 - ♦ 1.2350001 1.24 (Greater than half way)
 - ♦ 1.2350000 1.24 (Half way—round up)
 - ♦ 1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

 \diamond "Even" when least significant bit is 0

 \Rightarrow Half way when bits to right of rounding position = 100...₂

Examples

♦ Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded Action	Rounded Value
2 3/32	10.00011 ₂	10.00 ₂ (<1/2—down)	2
2 3/16	10.00110 ₂	10.01 ₂ (>1/2—up)	2 1/4
2 7/8	10.11100 ₂	11.00 ₂ (1/2—up)	3
2 5/8	10.10100 ₂	10.10 ₂ (1/2—down)	2 1/2

Example on Rounding

Round following result using IEEE 754 rounding modes:

Round to Nearest Even:

♦ Truncate result since $g = 0^{\circ}$

♦ Truncated Result: -1.111111111111111111111111 × 2⁻⁷

Guard Bit _____ Round

Rit

✤ Round towards +∞: Truncate result since negative

♦ Round towards $-\infty$: Increment since negative and s = '1'

 \diamond Incremented result: -10.00000000000000000000000000000 × 2⁻⁷

Renormalize and increment exponent (because of carry)

Round towards 0: Truncate always

Floating Point Subtraction Example

Perform the following floating-point operation rounding the result to the nearest even

0100 0011 1000 0000 0000 0000 0000 0000

- **0100 0001 1000 0000 0000 0000 0000 0101**

•	We add thre	e bits for e	ach operan	d representing G	, R, S
	bits as follow	NS:		GRS	
	1.000 0000	0000 0000	0000 0000	000	x 2 ⁸
-	1.000 0000	0000 0000	0000 0101	000	x 2 ⁴
=	1.000 0000	0000 0000	0000 0000	000	x 2 ⁸
-	0.000 1000	0000 0000	0000 0000	011	x 2 ⁸

Floating Point Subtraction Example

GRS

							0110	
=	<mark>0</mark> 1.000	0000	0000	0000	0000	0000	000	x 2 ⁸
+	<mark>1</mark> 1.111	0111	1111	1111	1111	1111	101	x 2 ⁸
=	<mark>0</mark> 0.111	0111	1111	1111	1111	1111	101	x 2 ⁸
=	+0.111	0111	1111	1111	1111	1111	101	x 2 ⁸
••••	Normali	zing t	he res	sult:				
=	+1.110	1111	1111	1111	1111	111 <mark>1</mark>	011	x 2 ⁷
•••	Roundir	ng to r	neares	st eve	n:			
_	⊥ 1 110	1111	1111	1111	1111	1111		x 2 ⁷

 $= +1.110 1111 1111 1111 1111 1111 x 2^{7}$

Fl	oating	Point
1 v	ounns	1 0000

Advantages of IEEE 754 Standard

- Used predominantly by the industry
- Encoding of exponent and fraction simplifies comparison
 - ♦ Integer comparator used to compare magnitude of FP numbers
- * Includes special exceptional values: NaN and $\pm \infty$
 - \diamond Special rules are used such as:
 - 0/0 is NaN, sqrt(-1) is NaN, 1/0 is ∞ , and 1/ ∞ is 0
 - $\diamond\,$ Computation may continue in the face of exceptional conditions
- Denormalized numbers to fill the gap
 - ♦ Between smallest normalized number $1.0 \times 2^{E_{min}}$ and zero
 - ♦ Denormalized numbers, values $0.F \times 2^{E_{min}}$, are closer to zero
 - ♦ Gradual underflow to zero

Floating Point Complexities

- Operations are somewhat more complicated
- In addition to overflow we can have underflow
- ✤ Accuracy can be a big problem
 - ♦ Extra bits to maintain precision: guard, round, and sticky
 - ♦ Four rounding modes
 - \diamond Division by zero yields Infinity
 - ♦ Zero divide by zero yields Not-a-Number
 - ♦ Other complexities
- Implementing the standard can be tricky
 - \diamond See text for description of 80x86 and Pentium bug!
- Not using the standard can be even worse

Next . . .

- Floating-Point Numbers
- ✤ IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- Extra Bits and Rounding
- MIPS Floating-Point Instructions

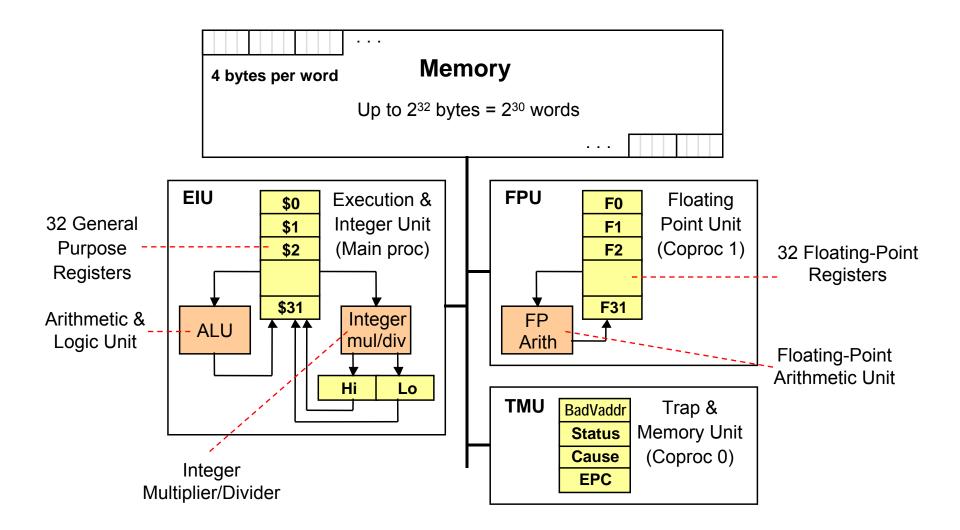
MIPS Floating Point Coprocessor

- Called Coprocessor 1 or the Floating Point Unit (FPU)
- ✤ 32 separate floating point registers: \$f0, \$f1, ..., \$f31
- ✤ FP registers are 32 bits for single precision numbers
- Even-odd register pair form a double precision register
- Separate FP instructions for single/double precision

♦ Single precision: add.s, sub.s, mul.s, div.s (.s extension)

FP instructions are more complex than the integer ones
 Take more cycles to execute

The MIPS Processor



FP Arithmetic Instructions

Instruction	Meaning			Forn	nat		
add.s fd, fs, ft	(fd) = (fs) + (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	0
add.d fd, fs, ft	(fd) = (fs) + (ft)	0x11	1	ft ⁵	fs5	fd ⁵	0
sub.s fd, fs, ft	(fd) = (fs) - (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	1
sub.d fd, fs, ft	(fd) = (fs) - (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	1
mul.s fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	0	ft ⁵	fs ⁵	fd ⁵	2
mul.d fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	1	ft ⁵	fs ⁵	fd ⁵	2
div.s fd, fs, ft	(fd) = (fs) / (ft)	0x11	0	ft5	fs ⁵	fd ⁵	3
div.d fd, fs, ft	(fd) = (fs) / (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	3
sqrt.s fd, fs	(fd) = sqrt (fs)	0x11	0	0	fs ⁵	fd ⁵	4
sqrt.d fd, fs	(fd) = sqrt (fs)	0x11	1	0	fs ⁵	fd ⁵	4
abs.s fd, fs	(fd) = abs (fs)	0x11	0	0	fs ⁵	fd ⁵	5
abs.d fd, fs	(fd) = abs (fs)	0x11	1	0	fs ⁵	fd ⁵	5
neg.s fd, fs	(fd) = -(fs)	0x11	0	0	fs ⁵	fd ⁵	7
neg.d fd, fs	(fd) = - (fs)	0x11	1	0	fs ⁵	fd ⁵	7

FP Load/Store Instructions

- Separate floating point load/store instructions
 - \diamond lwc1: load word coprocessor 1
 - \diamond ldc1: load double coprocessor 1
 - \diamond swc1: store word coprocessor 1
 - \diamond sdc1: store double coprocessor 1

General purpose register is used as the **base** register

Instru	uction	Meaning	Format			at
lwc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x31	\$t0	\$f2	im ¹⁶ = 40
ldc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x35	\$t0	\$f2	im ¹⁶ = 40
swc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x39	\$t0	\$f2	im ¹⁶ = 40
sdc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x3d	\$t0	\$f2	im ¹⁶ = 40

Better names can be used for the above instructions

 \diamond I.s = Iwc1 (load FP single), I.d = Idc1 (load FP double)

 \diamond s.s = swc1 (store FP single),

FP Data Movement Instructions

Moving data between general purpose and FP registers

Moving data between FP registers

 \diamond mov.s: move single precision float

mov.d: move double precision float = even/odd pair of registers

Instruc	ction	Meaning			For	mat		
mfc1	\$t0, \$f2	(\$t0) = (\$f2)	0x11	0	\$tO	\$f2	0	0
mtc1	\$t0, \$f2	(\$f2) = (\$t0)	0x11	4	\$tO	\$f2	0	0
mov.s	\$f4, \$f2	(\$f4) = (\$f2)	0x11	0	0	\$f2	\$f4	6
mov.d	\$f4, \$f2	(\$f4) = (\$f2)	0x11	1	0	\$f2	\$f4	6

FP Convert Instructions

Convert instruction: cvt.x.y

 \diamond Convert to destination format x from source format y

Supported formats

- Single precision float = .s (single precision float in FP register)
- Ouble precision float = .d (double float in even-odd FP register)

Signed integer word = .w (signed integer in FP register)

v (sianed	dintogor	in ED	register)	

Instruction	Meaning	Format					
cvt.s.w fd, fs	to single from integer	0x11	0	0	fs⁵	fd ⁵	0x20
cvt.s.d fd, fs	to single from double	0x11	1	0	fs⁵	fd ⁵	0x20
cvt.d.w fd, fs	to double from integer	0x11	0	0	fs⁵	fd ⁵	0x21
cvt.d.s fd, fs	to double from single	0x11	1	0	fs⁵	fd ⁵	0x21
cvt.w.s fd, fs	to integer from single	0x11	0	0	fs⁵	fd ⁵	0x24
cvt.w.d fd, fs	to integer from double	0x11	1	0	fs⁵	fd ⁵	0x24

FP Compare and Branch Instructions

FP unit (co-processor 1) has a condition flag

- \diamond Set to 0 (false) or 1 (true) by any comparison instruction
- Three comparisons: equal, less than, less than or equal
- Two branch instructions based on the condition flag

Instruc	ction	Meaning	Format					
c.eq.s	fs, ft	cflag = ((fs) == (ft))	0x11	0	ft ⁵	fs ⁵	0	0x32
c.eq.d	fs, ft	cflag = ((fs) == (ft))	0x11	1	ft ⁵	fs ⁵	0	0x32
c.lt.s	fs, ft	cflag = ((fs) < (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3c
c.lt.d	fs, ft	cflag = ((fs) < (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3c
c.le.s	fs, ft	cflag = ((fs) <= (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3e
c.le.d	fs, ft	cflag = ((fs) <= (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3e
bc1f	Label	branch if (cflag == 0)	0x11	8	0		im ¹⁶	
bc1t	Label	branch if (cflag == 1)	0x11	8	1		im ¹⁶	

FP Data Directives

✤ .FLOAT Directive

♦ Stores the listed values as single-precision floating point

✤ .DOUBLE Directive

♦ Stores the listed values as double-precision floating point

Examples

♦ var1: .FLOAT 12.3, -0.1

♦ var2: .DOUBLE 1.5e-10

♦ pi: .DOUBLE 3.1415926535897924

Syscall Services

Service	\$v0	Arguments / Result					
Print Integer	1	\$a0 = integer value to print					
Print Float	2	\$f12 = float value to print					
Print Double	3	\$f12 = double value to print					
Print String	4	\$a0 = address of null-terminated string					
Read Integer	5	\$v0 = integer read					
Read Float	6	\$f0 = float read					
Read Double	7	\$f0 = double read					
Read String	8	\$a0 = address of input buffer					
		\$a1 = maximum number of characters to read					
Exit Program	10						
Print Char	11	\$a0 = character to print Supported by MARS					
Read Char	12	\$a0 = character read					

Example 1: Area of a Circle

.data		
pi:	.double	3.1415926535897924
msg:	.asciiz	"Circle Area = "
.text		
main:		
ldc1	\$f2, pi	# \$f2,3 = pi
li	\$v0, 7	<pre># read double (radius)</pre>
syscall		# \$f0,1 = radius
mul.d	\$f12, \$f0, \$f0	# \$f12,13 = radius*radius
mul.d	\$f12, \$f2, \$f12	# \$f12,13 = area
la	\$a0, msg	
li	\$v0, 4	<pre># print string (msg)</pre>
syscall		
li	\$v0, 3	<pre># print double (area)</pre>
syscall		# print \$f12,13

Example 2: Matrix Multiplication

```
void mm (int n, double x[n][n], y[n][n], z[n][n]) {
  for (int i=0; i!=n; i=i+1)
    for (int j=0; j!=n; j=j+1) {
      double sum = 0.0;
      for (int k=0; k!=n; k=k+1)
         sum = sum + y[i][k] * z[k][j];
      x[i][j] = sum;
    }
}
```

- Matrices x, y, and z are n×n double precision float
- Matrix size is passed in \$a0 = n
- Array addresses are passed in \$a1, \$a2, and \$a3
- What is the MIPS assembly code for the procedure?

Matrix Multiplication Procedure - 1/3

Initialize Loop Variables

mm :	addu	\$t1,	\$0,	\$ 0	#	\$t1	=	i	=	0;	for	1^{st}	loop
L1:	addu	\$t2,	\$0,	\$0	#	\$t2	=	j	=	0;	for	2^{nd}	loop
L2:	addu	\$t3,	\$0,	\$0	#	\$t3	=	k	=	0;	for	$3^{\rm rd}$	loop
	sub.d	\$£0,	\$£0,	, \$£0	#	\$£0	=	ຣເ	ım	= (0.0		

Calculate address of y[i][k] and load it into \$f2,\$f3

Skip i rows (i×n) and add k elements

L3:	multu	\$t1,	\$a0	# i*size(row) = i*n
	mflo	\$t4		# \$t4 = i*n
	addu	\$t4,	\$t4, \$t3	# \$t4 = i*n + k
	sll	\$t4,	\$t4, 3	# \$t4 =(i*n + k)*8
	addu	\$t4,	\$a2, \$t4	<pre># \$t4 = address of y[i][k]</pre>
	ldc1	\$£2,	0(\$t4)	# \$f2 = y[i][k]

Matrix Multiplication Procedure - 2/3

Similarly, calculate address and load value of z[k][j]

Skip k rows (k×n) and add j elements

multu	\$t3,	\$a0	# k*size(row) = k*n
mflo	\$t5		# \$t5 = k*n
addu	\$t5,	\$t5, \$t2	# \$t5 = k*n + j
sll	\$t5,	\$t5, 3	# \$t5 =(k*n + j)*8
addu	\$t5,	\$a3, \$t5	# \$t5 = address of z[k][j]
ldc1	\$£4,	0(\$t5)	# \$f4 = z[k][j]

Now, multiply y[i][k] by z[k][j] and add it to \$f0

mul.d	\$£6,	\$£2,	\$£4	# \$f6 = y[i][k]*z[k][j]
add.d	\$£0,	\$£0,	\$£6	# \$f0 = sum
addiu	\$t3,	\$t3,	1	# k = k + 1
bne	\$t3,	\$a0,	LЗ	<pre># loop back if (k != n)</pre>

Matrix Multiplication Procedure - 3/3

Calculate address of x[i][j] and store sum

	multu mflo		\$a0			i*size(row) = i*n \$t6 = i*n
	addu	\$t6,	\$t6,	\$t2	#	\$t6 = i*n + j
	sll	\$t6,	\$t6,	3	#	\$t6 =(i*n + j)*8
	addu	\$t6,	\$a1,	\$t6	#	<pre>\$t6 = address of x[i][j]</pre>
	sdc1	\$£0,	0(\$t6	5)	#	x[i][j] = sum
* R	epeat c	outer l	oops:	L2 (fo	r j	=) and L1 (for i =)
	addiu	\$t2,	\$t2,	1	#	j = j + 1
	bne	\$t2,	\$a0,	L2	#	loop L2 if $(j != n)$
	addiu	\$t1,	\$t1,	1	#	i = i + 1
	bne	\$t1,	\$a0,	L1	#	loop L1 if (i != n)
* R	eturn:					

jr	\$ra	# return	
Floating Point		ICS 233 – KFUPM	© Muhamed Mudawar slide 71