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The World is Not Just Integers

“* Programming languages support numbers with fraction
< Called floating-point numbers
< Examples:
3.14159265... (n)
2.71828... (e)
0.000000001 or 1.0 x 102 (seconds in a nanosecond)
86,400,000,000,000 or 8.64 x 10'3 (nanoseconds in a day)

last number is a large integer that cannot fit in a 32-bit integer

** We use a scientific notation to represent
< Very small numbers (e.g. 1.0 x 1079)
< Very large numbers (e.g. 8.64 x 10"3)
< Scientific notation: £ d. f,ff5f, ... X 10 &85
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Floating-Point Numbers

*» Examples of floating-point numbers in base 10 ...

< 5.341x103, 0.05341x10°, -2.013x10-", -201.3x10-3
t__ decimal point

*» Examples of floating-point numbers in base 2 ...
< 1.00101x223 | 0.0100101%x22°>, —1.101101%2-3, —1101.101x2-5
{- Exponents are kept in decimal for clarity binary point

<> The binary number (1101.101), = 23+22+20+2-142-3 = 13.625
¢ Floating-point numbers should be normalized

< Exactly one non-zero digit should appear before the point
* |n a decimal number, this digit can be from 1 to 9
* |n a binary number, this digit should be 1

< Normalized FP Numbers: 5.341x10% and —1.101101x2-3
< NOT Normalized: 0.05341x10° and —1101.101x2-6
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Floating-Point Representation

*» A floating-point number is represented by the triple
< Sis the Sign bit (0 is positive and 1 is negative)
= Representation is called sign and magnitude
< E is the Exponent field (signed)
= Very large numbers have large positive exponents
= Very small close-to-zero numbers have negative exponents
= More bits in exponent field increases range of values
< F is the Fraction field (fraction after binary point)

» More bits in fraction field improves the precision of FP numbers

S| Exponent Fraction

Value of a floating-point number = (-1)° x val(F) x 2valE)
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Next . ..

*+ Floating-Point Numbers

*» IEEE 754 Floating-Point Standard

** Floating-Point Addition and Subtraction
*+ Floating-Point Multiplication

» Extra Bits and Rounding

“* MIPS Floating-Point Instructions
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TEEE 754 Floating-Point Standard

*+ Found in virtually every computer invented since 1980
< Simplified porting of floating-point numbers
< Unified the development of floating-point algorithms

< Increased the accuracy of floating-point numbers

“ Single Precision Floating Point Numbers (32 bits)
< 1-bit sign + 8-bit exponent + 23-bit fraction

S| Exponent?® Fraction23

¢ Double Precision Floating Point Numbers (64 bits)
< 1-bit sign + 11-bit exponent + 52-bit fraction

S| Exponent! Fraction®2

(continued)
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Normalized Floating Point Numbers

¢ For a normalized floating point number (S, E, F)

s E F=f f,f,f,...

% Significand is equal to (1.F), = (1.f,f;f5f,...),
< IEEE 754 assumes hidden 1. (not stored) for normalized numbers

< Significand is 1 bit longer than fraction
% Value of a Normalized Floating Point Number is
(=1)8 x (1.F), x 2+l(E)
(=1)3 x (1.f,f,f5f, ...), x 2val(E)
(—1)°>x (1 + 1‘1><2'1 + f2><2'2 + f3x2-3 + f4x2-4 L)y X oval(E)

(—1)°>is 1 when S is 0 (positive), and —1 when S is 1 (negative)
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Biased Exponent Representation

“* How to represent a signed exponent? Choices are ...
< Sign + magnitude representation for the exponent
< Two’s complement representation
< Biased representation

*» IEEE 754 uses biased representation for the exponent
< Value of exponent = val(E) = E — Bias (Bias is a constant)

*» Recall that exponent field is 8 bits for single precision
<> E can be in the range 0 to 255
< E=0and E = 255 are reserved for special use (discussed later)
< E =1to 254 are used for normalized floating point numbers
< Bias = 127 (half of 254), val(E) = E — 127
< val(E=1) = -126, val(E=127) =0, val(E=254) = 127
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Biased Exponent - Cont'd

¢ For double precision, exponent field is 11 bits
< E can be in the range 0 to 2047
<-E =0 and E = 2047 are reserved for special use
< E =1 to 2046 are used for normalized floating point numbers
< Bias = 1023 (half of 2046), val(E) = E — 1023
< val(E=1) = -1022, val(E=1023) = 0, val(E=2046) = 1023

*» Value of a Normalized Floating Point Number is

(—1)°> x (1.F), x 2E - Bias

(—1 )S X (1 + f1x2-1 + f2x2-2 + f3x2-3 + f4x2-4 )2 x 2E—Bias
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Examples of Single Precision Float

** What is the decimal value of this Single Precision float?

110{1]1]1|1{1/0(0(0|1|0|0|0]0|0(0(0(0(0|0|0]0]0|0|0|0|0/0|0|0|0

¢ Solution:
< Sign = 1 is negative
<> Exponent = (01111100), = 124, E — bias = 124 — 127 = -3
< Significand = (1.0100 ... 0),=1 + 22 =1.25 (1. is implicit)
<- Value in decimal = -1.25 x 2-3 = -0.15625

* What is the decimal value of?

0(1(0/0|0|0|0|1|0/0(1(0/0|1|1|0]0|0|0|0(0|0|0|0|0|0]0|0|0(0(0|0

% Solution: implicit
<> Value in decimal = +(1.01001100 ... 0), x 2130127 =
(1.01001100 ... 0), x 23=(1010.01100 ... 0), = 10.375
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Examples of Double Precision Float

+» What is the decimal value of this Double Precision float ?

0(1(0/0|0|0|0|0]0}1|0{1/0/0{1|0|1]|0|1|0(0(0|0|0|0|0]0|0|0(0(0|0
0(0(0/0/0]0|0]0]0]|0|0(0(0(0|0|0|0|0|0|0(0|0|0|0|0|O]0j0j0(0(0(0

s Solution:
< Value of exponent = (10000000101), — Bias = 1029 — 1023 = 6
<> Value of double float = (1.00101010 ... 0), x 26 (1. is implicit) =
(1001010.10 ... 0), =74.5

+» What is the decimal value of ?

110{1{1{1|1|1/1{1(0|0|0{1|0|0|0|0|0|0(0(0|0|0|0|0]0|0/0|0(0(0|0
0(0(0/0/0|0|0]0|0|0(0(0|0|0|0|0]0|0|0|0(0|0|0|0|0|0]0|0(0(0(0|0

*» Do it yourself! (answer should be —1.5 x 2-7 = -0.01171875)
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Converting FP Decimal to Binary

*» Convert —0.8125 to binary in single and double precision

¢ Solution:
<> Fraction bits can be obtained using multiplication by 2
= 0.8125x2 =1.625 )

= 0.625x2 =125

« 025x2 =05 ~| 0.8125=(0.1101), =% + Y4+ 1/16 = 13/16

= 0.5x2 =1.0
= Stop when fractional part is O

-

_____________________

1/01}1}1{1/1/1/0|1{0[1/0/0/ojolololo[ojojojoojojojojojojolofo]  >"9'e

Precision

110{1|1{1{1{1{1/1{1{1]0]1/0{1/0/0]0]|0|0/0|0]0|0(0}0|0]0|0(0|0|0 Double
0(0/0]0]0|0(0/0|0]0|0(0|0|0]0|0(0|0|0]0|0|0|0|0|0j0|0|0|00(0(0 Precision
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Largest Normalized Float

*» What is the Largest normalized float?
*» Solution for Single Precision:
oj1(|1{{1l{1jo[1|1{1|1[1{1[1{1[1[1|1[1]1[1[1[1{1]1]1|1]1]1]1

< Exponent — bias = 254 — 127 = 127 (largest exponent for SP)
< Significand = (1.111 ... 1), = almost 2
<> Value in decimal = 2 x 2127 = 2128 = 3 4028 ... x 1038

+s» Solution for Double Precision:

O |11 1111011111111 (111111111111
1111111

<> Value in decimal = 2 x 21023 = 21024 = 1 79769 ... x 10308
“ Overflow: exponent is too large to fit in the exponent field
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Smallest Normalized Float

** What is the smallest (in absolute value) normalized float?
 Solution for Single Precision:

0(0(0(0|0}0}0]0|1/0/0(0/0|0|0|0|0|0|0|0(0|0|0|0|0|0|0|0j0(0(0(0

< Exponent — bias =1 - 127 = -126 (smallest exponent for SP)
< Significand = (1.000 ... 0), =1
< Value in decimal = 1 x 2-126 = 1, 17549 ... x 1038

s+ Solution for Double Precision:

0(0(0(0|0}0}0]0|0|0|0{1/0/0/0|0|0|0|0|0(0|0|0|0|0|O]0|0j0(0(0(0
0(0/0]0]|0|0(0|0|0]0|0(0|0|0]0|0(0|0|0]0|0|0|0|0]0(0(0|0|00(0(0

< Value in decimal = 1 x 271022 = 2 22507 ... x 10308
*» Underflow: exponent is too small to fit in exponent field
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Zero, Infinity, and NaN

s Zero
< Exponent field E = 0 and fraction F =0
< +0 and -0 are possible according to sign bit S
 Infinity
< Infinity is a special value represented with maximum Eand F =0

= For single precision with 8-bit exponent: maximum E = 255
» For double precision with 11-bit exponent: maximum E = 2047

< Infinity can result from overflow or division by zero
< +o0 and —o are possible according to sign bit S

“* NaN (Not a Number)

<> NaN is a special value represented with maximum E and F #0
< Result from exceptional situations, such as 0/0 or sqrt(negative)
< Operation on a NaN results is NaN: Op(X, NaN) = NaN
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Denormalized Numbers

*» IEEE standard uses denormalized numbers to ...
<> Fill the gap between 0 and the smallest normalized float

< Provide gradual underflow to zero

** Denormalized: exponent field E is 0 and fraction F #0

< Implicit 1. before the fraction now becomes 0. (not normalized)

< Value of denormalized number ( S, 0, F)

Single precision:  (—1)S x (0.F), x 2-126
Double precision:  (—1)S x (0.F), x 2-1022

Negative Negative Positive Positive
Overflow Underflow ; Underflow Overflow
— —— N —
I
-0 Normalized (—ve) Denorm : Denorm Normalized (+ve) Foo
) _2I128 _2—.126 0 2—I126 21I28 g
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Floating Point

Special Value Rules

Operation Result
n/ +oo +0
+00 X 00 +00
nonzero / 0 +00
00 + 00 oo (similar for -oo)
+0 /20 NaN
00 - 00 NaN (similar for -o0)
+o00 [ +o0 NaN
too X £0 NaN
NaN op anything NaN

ICS 233 - KFUPM
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Floating-Point Comparison

» I[EEE 754 floating point numbers are ordered

< Because exponent uses a biased representation ...
= Exponent value and its binary representation have same ordering
< Placing exponent before the fraction field orders the magnitude
= |Larger exponent = larger magnitude
» For equal exponents, Larger fraction = larger magnitude
= 0 <(0.F), x 2Fmn< (1.F), x 2E-Bias < oo (E_. = 1 — Bias)

<> Because sign bit is most significant = quick test of signed <

*» Integer comparator can compare magnitudes

X =(Ey, Fy) — |Integer [— X<Y
Magnitude |— X =Y
Y =(E,, F,) —] Comparator | , y > v
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Summary of IEEE 754 Encoding

Single-Precision Exponent =8 | Fraction = 23

Normalized Number 1to 254 Anything + (1.F), x 2B-127
Denormalized Number 0 nonzero + (0.F), x 2-126
Zero 0 0 +0
Infinity 255 0 + 0

NaN 255 nonzero NaN
Double-Precision Exponent = 11 | Fraction = 52

Normalized Number 1 to 2046 Anything + (1.F), x 2E-1023
Denormalized Number 0 nonzero + (0.F), x 2-1022
Zero 0 0 +0
Infinity 2047 0 + oo

NaN 2047 nonzero NaN
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Simple 6-bit Floating Point Example

¢ 6-bit floating point representation

S| Exponent® |Fraction?

< Sign bit is the most significant bit
< Next 3 bits are the exponent with a bias of 3

<~ Last 2 bits are the fraction

* Same general form as |I[EEE
< Normalized, denormalized

< Representation of 0, infinity and NaN
< Value of normalized numbers (—1)S x (1.F), x 283

“ Value of denormalized numbers (—1)> x (0.F), x 2-2
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Values Related to Exponent

EXxp. exp E 2E
0 000 -2 Va
1 001 -2 Va
2 010 -1 iz
3 011 0 1
4 100 1 2
5 101 2 4
6 110 3 8
7 111 n/a

Floating Point

ICS 233 - KFUPM

Denormalized

> Normalized

J
Inf or NaN
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Dynamic Range of Values

S exp | frac E value

0 | 000 00 -2 0

0 | 000 01 -2 1/4*1/4=1/16

0 | 000 10 -2 2/4*1/4=2/16

0 | 000 11 -2 3/4*1/4=3/16

0 | 001 00 -2 4/4*1/4=4/16=1/4=0.25
0 | 001 01 -2 5/4*1/4=5/16

0 | 001 10 -2 6/4*1/4=6/16

0 | 001 11 -2 714*1/4=7/16

0 | 010 00 -1 4/4*2/4=8/16=1/2=0.5
0 | 010 01 -1 5/4*2/4=10/16

0 | 010 10 -1 6/4*2/4=12/16=0.75
0 | 010 11 -1 714*2/4=14/16

Floating Point

ICS 233 - KFUPM

smallest denormalized

largest denormalized

smallest normalized
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Dynamic Range of Values

s | exp | frac E value

0| 011 | 00 0 4/4*4/4=16/16=1

0| 011 | O1 0 o/4*4/4=20/16=1.25
0| 011 | 10 0 6/4*4/4=24/16=1.5
o011 | 11 0 714*4/4=28/16=1.75
0 | 100 | 00 1 4/4*8/4=32/16=2

0 | 100 | O1 1 5/4*8/4=40/16=2.5
0 | 100 | 10 1 6/4*8/4=48/16=3
O | 100 | 11 1 714*8/4=56/16=3.5
0| 101 | 00 2 4/4*16/4=64/16=4
0| 101 | 0O1 2 5/4*16/4=80/16=5
0| 101 | 10 2 6/4*16/4=96/16=6
o 101 | 11 2 714*16/4=112/16=7

Floating Point

ICS 233 - KFUPM
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Dynamic Range of Values

s | exp | frac E value

0 | 110 | 00 3 4/4*32/4=128/16=8
0 | 110 | 01 3 2/4*32/4=160/16=10
0O | 110 | 10 3 6/4*32/4=192/16=12
0| 110 | 11 3 714*32/4=224/16=14
0 | 111 00 0

0 | 111 01 NaN

0 | 111 10 NaN

0 | 111 11 NaN

Floating Point

ICS 233 - KFUPM

largest normalized
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Distribution of Values

-1 -0.5 0 0.5 1

+ Denormalized & Normalized  Infinity
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Next . ..

** Floating-Point Numbers

*» I[EEE 754 Floating-Point Standard

“* Floating-Point Addition and Subtraction
** Floating-Point Multiplication

¢ Extra Bits and Rounding

“* MIPS Floating-Point Instructions

Floating Point ICS 233 - KFUPM
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Floating Point Addition Example
“ Consider adding: (1.111), x 2= + (1.011), x 273

< For simplicity, we assume 4 bits of precision (or 3 bits of fraction)

* Cannot add significands ... Why?

<> Because exponents are not equal

*+ How to make exponents equal?
< Shift the significand of the lesser exponent right
until its exponent matches the larger number

% (1.011), x 2-3 = (0.1011), x 2-2 = (0.01011), x 2-
< Difference between the two exponents = -1 — (-3) = 2

< So, shift right by 2 bits 1.111
+
0.01011

Carry — 10.00111

** Now, add the significands:
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Addition Example - cont'd

“ So, (1.111), x 21+ (1.011), x 2-3 = (10.00111), x 2
< However, result (10.00111), x 2-1is NOT normalized
< Normalize result: (10.00111), x 2-" = (1.000111), x 2°

< In this example, we have a carry
< So, shift right by 1 bit and increment the exponent

** Round the significand to fit in appropriate number of bits

<> We assumed 4 bits of precision or 3 bits of fraction

< Round to nearest: (1.000111), = (1.001), 1.000/111
< Renormalize if rounding generates a carry + 1
<% Detect overflow / underflow 1.001

< If exponent becomes too large (overflow) or too small (underflow)
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Floating Point Subtraction Example
< Consider: (1.000), x 2-3 — (1.000), x 22

< We assume again: 4 bits of precision (or 3 bits of fraction)

* Shift significand of the lesser exponent right

< Difference between the two exponents =2 — (-3) =5
<> Shift right by 5 bits: (1.000), x 22 = (0.00001000), x 27

¢ Convert subtraction into addition to 2's complement

Sign—¢

$ |t 0.00001 x 22 Since result is negative,

5 |- 1-00000 x 22 convert result from 2's

g( 0 0.00001 x 22 complement to sign-magnitude
S ™|1 1.00000 x 22

%) 2's Complement

N 1 1.00001 x 22 | — 0.11111 x 22
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Subtraction Example - cont'd

< So, (1.000), x 22— (1.000), x 22 = - 0.11111, x 22
< Normalize result: — 0.11111, x 22 = - 1.1111, x 2’

< For subtraction, we can have leading zeros
<> Count number z of leading zeros (in this case z = 1)
< Shift left and decrement exponent by z
** Round the significand to fit in appropriate number of bits

<> We assumed 4 bits of precision or 3 bits of fraction

< Round to nearest: (1.1111), = (10.000), . 1-111L1
1

10.000

*» Renormalize: rounding generated a carry

~1.1111, x 21 = ~10.000, x 2' = —1.000, x 22

< Result would have been accurate if more fraction bits are used
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Floating Point Addition / Subtraction

( stat )
v

Shift significand right by

1. Compare the exponents of the two numbers. Shift the d=|E,—-E,|

smaller number to the right until its exponent would match

the larger exponent.

Add significands when signs

2. Add / Subtract the signifi fj ding to the sian bit of X and Y are identical,
: ubtract the signi |can¢s according to the sign bits. Subtract when differont

X =Y becomes X + (-Y)

3. Normalize the sum, either shifting right and incrementing

the exponent or shifting left and decrementing the exponent

v Normalization shifts right by 1 if

4. Round the significand to the appropriate number of bits, there is a carry, or shifts left by

and renormalize if rounding generates a carry the number of leading zeros in

the case of subtraction

Overflow or

underflow? Exception ) Rounding either truncates

fraction, or adds a 1 to least
significant fraction bit

( Done )
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Floating Point Adder Block Diagram

E, E,
\ 4 \/ \ 4 . 1 FX 1 FY
Exponent / s1gn —
(0 1
Subtractor / o ‘ s ‘
> wap
d=|E,—E,| ‘
A »| Shift Right
: dd / subtract v
S, [ | add / subtract N
add/sub Sign | \ Significand
Computation | sign Adder/Subtractor
S, \
max (Ey, Ey) 1
c ‘ c,
Detect carry, or | Shift Right / Left
hz Count leading 0’s | z
\ 4 y g ‘

Floating Point

A

Inc / Dec

\ 4

E,

ICS 233 - KFUPM

Rounding Logic

v

F;
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Next . ..

¢ Floating-Point Numbers

*» IEEE 754 Floating-Point Standard

¢ Floating-Point Addition and Subtraction
*» Floating-Point Multiplication

s Extra Bits and Rounding

** MIPS Floating-Point Instructions
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Floating Point Multiplication Example

< Consider multiplying: 1.010, x 2-' by —1.110, x 2-2

< As before, we assume 4 bits of precision (or 3 bits of fraction)

*» Unlike addition, we add the exponents of the operands

< Result exponent value = (-1) + (-2) = -3

“ Using the biased representation: E, = E, + E, — Bias

& E, = (1) + 127 = 126 (Bias = 127 for SP)
& E, = (=2) + 127 =125
& E, =126 + 125 — 127 = 124 (value = —3)
“* Now, multiply the significands:
(1.010), x (1.110), = (10.001100),

3-bit fraction 3-bit fraction 6-bit fraction

Floating Point ICS 233 - KFUPM

=)

y 1.010
1.110

0000
1010
1010
1010

10001100
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Multiplication Example - cont'd

% Since sign Sy # Sy, sign of product S, = 1 (negative)
% So, 1.010, x 27" x -1.110, x 22 =-10. 001100, x 2-3
“ However, result: —10. 001100, x 2-3is NOT normalized

< Normalize: 10. 001100, x 23 =1.0001100, x 2-2

< Shift right by 1 bit and increment the exponent
< At most 1 bit can be shifted right ... Why?

“* Round the significand to nearest:

_ _ 1.000:1100
1.0001100, = 1.001, (3-bit fraction) + 1]
Result = -1. 001, x 2= (hormalized) 1.001

“ Detect overflow / underflow
< No overflow / underflow because exponent is within range
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Floating Point Multiplication

( Start )
v

1. Add the biased exponents of the two numbers, subtracting
the bias from the sum to get the new biased exponent

Biased Exponent Addition
E,=E, + E,—Bias

!

2. Multiply the significands. Set the result sign to positive if
operands have same sign, and negative otherwise

Result sign S, = S, xor S, can
be computed independently

v

3. Normalize the product if necessary, shifting its significand
right and incrementing the exponent

v

4. Round the significand to the appropriate number of bits,
and renormalize if rounding generates a carry

Since the operand significands
1.F,and 1.F, are 21 and < 2,
their product is 2 1 and < 4.
To normalize product, we need
to shift right by 1 bit only and
increment exponent

Overflow or
underflow?

Exception )

C Done )

Floating Point ICS 233 - KFUPM

Rounding either truncates
fraction, or adds a 1 to least
significant fraction bit
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Next . ..

*+ Floating-Point Numbers

*» |[EEE 754 Floating-Point Standard

** Floating-Point Addition and Subtraction
*+ Floating-Point Multiplication

*» Extra Bits and Rounding

“* MIPS Floating-Point Instructions
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Extra Bits to Maintain Precision

*» Floating-point numbers are approximations for ...

< Real numbers that they cannot represent

¢ Infinite variety of real numbers exist between 1.0 and 2.0
<> However, exactly 222 fractions can be represented in SP, and

< Exactly 252 fractions can be represented in DP (double precision)

s Extra bits are generated in intermediate results when ...
< Shifting and adding/subtracting a p-bit significand
< Multiplying two p-bit significands (product can be 2p bits)

“ But when packing result fraction, extra bits are discarded

“* We only need few extra bits in an intermediate result

< Minimizing hardware but without compromising precision
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Alignment and Normalization Issues

¢ During alignment
< smaller exponent argument gets significand right shifted
<> need for extra precision in the FPU
<> the question is how much extra do you need?

¢ During normalization
<> a left or right shift of the significand may occur
¢ During the rounding step
<> extra internal precision bits get dropped
*» Time to consider how many extra bits we need

< to do rounding properly

< to compensate for what happens during alignment and
normalization
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Guard Bit

“* When we shift bits to the right, those bits are lost.

“* We may need to shift the result to the left for
normalization.

*» Keeping the bits shifted to the right will make the result
more accurate when result is shifted to the left.
¢ Questions:
< Which operation will require shifting the result to the left?

<> What is the maximum number of bits needed to be shifted left in
the result?

* If the number of right shifts for alignment >1, then the
maximum number of left shifts required for normalization
Is 1.
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For Effective Addition

+» Result of Addition

<~ either normalized

<> or generates 1 additional integer bit
» hence right shift of 1

= need for f+1 bits

= extra bit called rounding bit is used for rounding the result

*» Alignment throws a bunch of bits to the right
< need to know whether they were all 0 or not for proper rounding

< hence 1 more bit called the sticky bit
= sticky bit value is the OR of the discarded bits
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For Effective Subtraction

*» There are 2 subcases

< if the difference in the two exponents is larger than 1
= alignment produces a mantissa with more than 1 leading 0
» hence result is either normalized or has one leading O
= in this case a left shift will be required in normalization
» an extra bit is needed for the fraction called the guard bit
» also during subtraction a borrow may happen at position f+2
= this borrow is determined by the sticky bit

< the difference of the two exponents is 0 or 1
» in this case the result may have many more than 1 leading O
» but at most one nonzero bit was shifted during normalization
» hence only one additional bit is needed for the subtraction result
= borrow to the extra bit may happen
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Extra Bits Needed

¢ Three bits are added called Guard, Round, Sticky

< Reduce the hardware and still achieve accurate arithmetic
< As if result significand was computed exactly and rounded

*» Internal Representation:

B TN " ] B B
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Guard Bit

* Guard bit: guards against loss of a significant bit
< Only one guard bit is needed to maintain accuracy of result
< Shifted left (if needed) during normalization as last fraction bit

s Example on the need of a guard bit:

1.00000000101100010001101 x 2°
-00000000000000011011010 x 2-2 (subtraction)

-00000000101100010001101 x 2°
-00000010000000000000001 1011010 x 2° (shiftright 7 bits)

1
1
0
1.00000000101100010001101 x 25 _. Guardbit—do notdiscard
1
0
1

-11111101111111111111110 @)"1’00110 X 2° (2's complement)
-11111110101100010001011 @) 100110 x 2° (add significands)
211111101011000100010110* 1 001100 x 24 (normalized)
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Round and Sticky Bits

s Two extra bits are needed for rounding

<> Rounding performed after normalizing a result significand
<> Round bit: appears after the guard bit
< Sticky bit: appears after the round bit (OR of all additional bits)

¢ Consider the same example of previous slide:
Guard bit

/

1.00000000101100010001101 /' OR.reduce X 25

/

11.11111101111111111111110 @ 1 (6011@ x 25 (2's complement)

\_j__
1

el

0 0.11111110101100010001011 @) 1 1) x 2°(sum)

+1.11111101011000100010110 1 (1, I} x 24 (normalized)
Round bit - - = - Sticky bit
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If the three Extra Bits not Used

-00000000101100010001101 x
-00000000000000011011010 x

25
2-2 (subtraction)

-00000000101100010001101 x

25

-00000010000000000000001 1011010 x 2> (shift right 7 bits)

-00000000101100010001101 x

25
2° (2's complement)

-11111110101100010001100 x

2° (add significands)

-11111101011000100011000 x

1

1

1

0

1
11-.11717171101111171171717171711311171 X

0

1

1-11111101011000100010110 x

1

Floating Point ICS 233 - KFUPM

24 (normalized without GRS)
2% (normalized with GRS)

211111101011000100010111 x 24 (With GRS after rounding)
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Four Rounding Modes

L)

*

Normalized result has the form: 1. f, f, ... f,grs

L)

< The guard bit g, round bit r and sticky bit s appear after the last fraction
bit f,

IEEE 754 standard specifies four modes of rounding

L)

*

*

Round to Nearest Even: default rounding mode
< Increment result if: g=1 andrors="1"or(g=1and rs ="00" and f, = '1’)
< Otherwise, truncate result significand to 1. f, f, ... f|
% Round toward +co: result is rounded up
< Increment result if sign is positive and gorrors =1’
% Round toward —w: result is rounded down

< Increment result if sign is negative andgorrors =1’

* Round toward 0: always truncate result
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Illustration of Rounding Modes

< Rounding modes illustrated with $ rounding
$1.40 351.60 351.50 35250 =51.50

» Zero 51 51 51 52 51

* Round down (=) 51 51 51 52 52

* Round up (+==) 52 52 52 53 —51

» Nearest Even (default) 51 52 52 52 52
s Notes

< Round down: rounded result is close to but no greater than true result.

<> Round up: rounded result is close to but no less than true result.
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Closer Look at Round to Even

*» Set of positive numbers will consistently be over- or
underestimated

¢ All other rounding modes are statistically biased

** When exactly halfway between two possible values

< Round so that least significant digit is even

** E.g., round to nearest hundredth
< 1.2349999 1.23 (Less than half way)
< 1.2350001 1.24 (Greater than half way)
< 1.2350000 1.24 (Half way—round up)
< 1.2450000 1.24 (Half way—round down)
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Rounding Binary Numbers

*» Binary Fractional Numbers

<> “Even” when least significant bit is 0

< Half way when bits to right of rounding position = 100...,
> Examples

< Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value
2 3/32 10.00011, 10.00, (<1/2—down) 2

2 3/16 10.00110, 10.01, (>1/2—up) 2 1/4

27/8 10.11100, 11.00, (1/2—up) 3

2 5/8 10.10100, 10.10, (1/2—down) 2 1/2
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Example on Rounding

¢ Round following result using IEEE 754 rounding modes:

~1.11111212121111111111111111 0010 1 x 27

Guard Bit—! £ Round
“+ Round to Nearest Even: Bit

< Truncate result since g = ‘0’
< Truncated Result: —1.111111111111121111111111 x 27

¢ Round towards +«: Truncate result since negative

¢ Round towards —«: Increment since negative and s =1’
< Incremented result: —10.00000000000000000000000 x 2-7

< Renormalize and increment exponent (because of carry)
< Final rounded result: —1 .00000000000000000000000 x 2-°

“* Round towards 0: Truncate always
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Floating Point Subtraction Example

*» Perform the following floating-point operation rounding
the result to the nearest even
0100 0011 1000 0000 0000 0000 0000 0000

- 0100 0001 1000 0000 0000 0000 0000 0101

** We add three bits for each operand representing G, R, S
bits as follows:

GRS
1.000 0000 0000 0000 0000 0000 000 X 28
- 1.000 0000 0000 0000 0000 0101 OO0 X 24
= 1.000 0000 0000 0000 0000 0000 000 X 28

- 0.000 1000 0000 0000 0000 0000 011 X 28
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Floating Point Subtraction Example

GRS
= (01.000 0000 0000 0000 0000 0000 000 X 28
+ 11.111 0111111111211 11111111 101 X 28
= 00.111 0111111111211 11171 1111 101 X 28
= +0.11101111111 111111111111 101 X 28
*+ Normalizing the result:
= +1.1101111 1111111112111 1111011 X 2/

.0

» Rounding to nearest even:
+1.110 1111 1111 1111 1111 1111 X 27
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Advantages of IEEE 754 Standard

*» Used predominantly by the industry

*» Encoding of exponent and fraction simplifies comparison

< Integer comparator used to compare magnitude of FP numbers

*» Includes special exceptional values: NaN and +oo
<> Special rules are used such as:
= 0/0 is NaN, sqgrt(—1) is NaN, 1/0 is «©, and 1/« is 0
<> Computation may continue in the face of exceptional conditions
¢ Denormalized numbers to fill the gap
4 Between smallest normalized number 1.0 x 25" and zero
<> Denormalized numbers, values 0.F x 2Emin . are closer to zero

<> Gradual underflow to zero
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Floating Point Complexities

* Operations are somewhat more complicated
* In addition to overflow we can have underflow

¢ Accuracy can be a big problem
< Extra bits to maintain precision: guard, round, and sticky
< Four rounding modes
< Division by zero yields Infinity
< Zero divide by zero yields Not-a-Number
<> Other complexities
“+ Implementing the standard can be tricky
< See text for description of 80x86 and Pentium bug!

“* Not using the standard can be even worse
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Next . ..

¢ Floating-Point Numbers

*» IEEE 754 Floating-Point Standard

¢ Floating-Point Addition and Subtraction
*» Floating-Point Multiplication

s Extra Bits and Rounding

** MIPS Floating-Point Instructions
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MIPS Floating Point Coprocessor

¢ Called Coprocessor 1 or the Floating Point Unit (FPU)
% 32 separate floating point registers: $f0, $f1, ..., $f31
“* FP registers are 32 bits for single precision numbers
s Even-odd register pair form a double precision register

* Use the even number for double precision registers
<~ $f0, $f2, $f4, ..., $f30 are used for double precision

* Separate FP instructions for single/double precision
< Single precision: add.s, sub.s, mul.s, div.s (.s extension)
<> Double precision: add.d, sub.d, mul.d, div.d (.d extension)

*» FP instructions are more complex than the integer ones

<> Take more cycles to execute
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32 General
Purpose ---
Registers

Arithmetic &
Logic Unit

The MIPS Processor

4 bytes per word

Memory

Up to 232 bytes = 230 words

32 Floating-Point
--  Registers

Floating-Point

Multiplier/Divider

Floating Point

EIU $0 | Execution & FPU FO Floating
$1 Integer Unit F1 Point Unit
---------- - $2 | (Main proc) F2_| (Coproc 1)
%31 Integer FP e
A AL
1A _{mulidiv Arith =3
P
il Hi Lo
— TMU | BadVaddr Trap &
Status | Memory Unit
I g Cause | (Coproc 0)
nteger EPC

ICS 233 - KFUPM

“Arithmetic Unit
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FP Arithmetic Instructions

add.s fd, fs, ft (fd) = (fs) + (ft) 0x11 0 fto fs5 | fd® 0
add.d fd, fs, ft (fd) = (fs) + (ft) 0x11 1 fto fs® | fd° 0
sub.s fd, fs, ft (fd) = (fs) — (ft) Ox11 0 fto fs5 | fd° 1
sub.d fd, fs, ft (fd) = (fs) — (ft) 0x11 1 fto fs5 | fd° 1
mul.s fd, fs, ft (fd) = (fs) x (ft) 0x11 0 ftd fsd | fd° 2
mul.d fd, fs, ft (fd) = (fs) x (ft) 0x11 1 ftd fsd | fd° 2
div.s fd, fs, ft (fd) = (fs) 7 (ft) 0x11 0 ftd fsd | fd° 3
div.d fd, fs, ft (fd) = (fs) 7 (ft) 0x11 1 ftd fsd | fd° 3
sgrt.s fd, fs (fd) = sqrt (fs) 0x11 0 0 fsd | fd° 4
sqrt.d fd, fs (fd) = sqrt (fs) 0x11 1 0 fsd | fd° 4
abs.s fd, fs (fd) = abs (fs) 0x11 0 0 fsd | fd° 5
abs.d fd, fs (fd) = abs (fs) 0x11 1 0 fsd | fd° 5
neg.s fd, fs (fd) = — (fs) 0x11 0 0 fsd | fd° 7
neg.d fd,fs (fd) = — (fs) 0x11 1 0 fs5 | fdd 7

Floating Point

ICS 233 - KFUPM
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FP Load/Store Instructions

“* Separate floating point load/store instructions

< lwc1: load word coprocessor 1

General purpose

register is used as
< swc1: store word coprocessor 1 the base register

<-Ildc1: load double coprocessor 1

<> sdc1: store double coprocessor 1

Instruction Meaning Format
lwc1  $f2, 40(5t0) | ($f2) = Mem][($t0)+40] | Ox31 | $t0 | $f2 | im'6 =40
Idc1  $f2, 40(5t0) | ($f2) = Mem][($t0)+40] | Ox35 | $t0 | $f2 | im'6 =40
)
)

swcl $2, 40($t0) | Mem([($t0)+40] = ($72) | 0x39 | $t0 | $f2 | im'6 = 40
sdc1  $f2, 40($t0) | Mem([($t0)+40] = ($72) | 0x3d | $t0 | $f2 | im'6 = 40

+» Better names can be used for the above instructions
< l.s = lwc1 (load FP single), |.d = ldc1 (load FP double)
<> s.s = swc1 (store FP single), s.d = sdc1 (store FP double)
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FP Data Movement Instructions

** Moving data between general purpose and FP registers
< mfc1: move from coprocessor 1 (to general purpose register)

< mtc1: move to coprocessor 1 (from general purpose register)

** Moving data between FP registers

< mov.s: move single precision float

<> mov.d: move double precision float = even/odd pair of registers

Instruction Meaning Format

mfc1  $t0, $f2 | ($t0)=($f2) | Ox11 | O | $t0O | $f2 | O 0
mtc1  $t0, $f2 | ($f2)=($t0) | Ox11 | 4 | $t0 | $f2 | O 0
mov.s $f4, $f2 | ($f4)=($f2) | Ox11 | O 0 | $f2 | $f4 6
mov.d $f4, $f2 | ($f4) = ($f2) | Ox11 1 0 | $2 | $f4 6
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FP Convert Instructions

¢ Convert instruction: cvt.x.y

< Convert to destination format x from source format y

“* Supported formats

<> Single precision float .S (single precision float in FP register)
<> Double precision float =.d (double float in even-odd FP register)
W

< Signed integer word = (signed integer in FP register)

Instruction Meaning Format

fso | fd> | 0x20
fso | fd> | 0x20
fso | fd> | Ox21
fs° | fd> | Ox21
fso | fd°> | Ox24
fso | fd°> | Ox24

cvt.s.w fd, fs |to single from integer | O0x11
cvt.s.d fd, fs |to single from double | O0x11
cvt.d.w fd, fs |to double from integer| O0x11
cvt.d.s fd, fs |to double from single | O0x11
cvt.w.s fd, fs |to integer from single | 0x11
cvt.w.d fd, fs |to integer from double | 0x11

10| |O(-~|O

OO0 |O0O|O
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FP Compare and Branch Instructions

¢ FP unit (co-processor 1) has a condition flag

< Set to 0 (false) or 1 (true) by any comparison instruction
*» Three comparisons: equal, less than, less than or equal

¢ Two branch instructions based on the condition flag

Instruction Meaning Format

c.eq.s fs,ft cflag = ((fs) == (ft)) 0x11 0 fto | fs5 | 0 | 0x32
c.eqd fs, ft cflag = ((fs) == (ft)) 0x11 1 fto | fs® | 0 | 0x32
clts fs, ft cflag = ((fs) < (ft)) 0x11 0 fto | fs® | O | Ox3c
cltd fs, ft cflag = ((fs) < (ft)) 0x11 1 fto | fs5 | 0 | Ox3c
cle.s fs,ft cflag = ((fs) <= (ft)) 0x11 0 fto | fs5 | 0 | Ox3e
cled fs,ft cflag = ((fs) <= (f )) 0x11 1 fto | fs5 | 0 | Ox3e
bc1f Label branch if (cflag == 0) | Ox11 8 0 im16

bc1t  Label branch if (cflag == 1) | 0x11 8 1 im16
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FP Data Directives

 .FLOAT Directive
< Stores the listed values as single-precision floating point
% .DOUBLE Directive

< Stores the listed values as double-precision floating point
» Examples

< varl: .FLOAT 123,-0.1

< var2: .DOUBLE 1.5e-10

< pi:  .DOUBLE 3.1415926535897924
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Syscall Services

Service $v0 | Arguments / Result
Print Integer 1 | $a0 = integer value to print
Print Float 2 | $f12 = float value to print
Print Double 3 | $f12 = double value to print
Print String 4 | $a0 = address of null-terminated string
Read Integer 5 | $v0 = integer read
Read Float 6 | $f0 = float read
Read Double | 7 |$f0 = double read
Read String 8 | $a0 = address of input buffer

$a1 = maximum number of characters to read
Exit Program | 10
Print Char 11 | $a0 = character to print

Supported by MARS

Read Char 12 | $a0 = character read

Floating Point

ICS 233 - KFUPM
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Example 1: Area of a Circle

.data
pi: .double 3.1415926535897924
msg: .asciiz "“"Circle Area = "

-text

main:
Idcl $f2, pi # $f2,3 = pi
li $vO, 7 # read double (radius)
syscall # $f0,1 = radius
mul.d $f12, $Ff0, $Ff0 # $f12,13 = radius*radius
mul.d $Ff12, $Ff2, $Ff12 # $f1l2,13 = area
la $a0, msg
r $v0, 4 # print string (msg)
syscall
r $v0, 3 # print double (area)

syscall # print $f12,13
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Example 2: Matrix Multiplication

void mm (int n, double x[n][n], vy[n]lIn], z[n][n]) {
for (int 1=0; 1'=n; 1=1+1)
for (int j=0; jI'=n; jJ=3+1) {
double sum = 0.0;
for (int k=0; k!=n; k=k+1)
sum = sum + y[i1][K] * z[Kk]l[}];
) x[1]1] = sum;

}

** Matrices X, y, and z are nxn double precision float
% Matrix size is passed in $a0 = n
“ Array addresses are passed in $al, $a2, and $a3

** What is the MIPS assembly code for the procedure?
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Matrix Multiplication Procedure - 1/3

» Initialize Loop Variables

mm: addu $t1l, $0, $0 # $t1 = 1 = 0; for 1st loop

L1: addu $t2, $0, $0 # $t2 = jJ = 0; for 2™ loop

L2: addu $t3, $0, $0 # $t3 = k = 0; for 3" loop
sub.d $f0, $Ff0, $FO0 # $FO0 = sum = 0.0

* Calculate address of y[1][Kk] and load it into $f2,$F3

“ Skip 1 rows (1xn) and add k elements

L3: multu $t1, $a0 # 1*size(row) = i*n
mflo $t4 # $t4 = i*n
addu $t4, $t4, $t3 # $t4 = 1*n + kK
sl $t4, $t4, 3 # $t4 =(i*n + k)*8
addu $t4, $a2, $t4 # $t4 = address of y[i][K]
Idcl $f2, 0($td) # $2 = y[i][K]
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Matrix Multiplication Procedure - 2/3

“ Similarly, calculate address and load value of z[ k][] ]

* Skip k rows (kxn) and add j elements

multu $t3, $%$al # k*size(row) = k*n

mFlo $t5 # $t5 = k*n

addu $t5, $t5, $t2 # $t5 = k*n + j

sl  $t5, $t5, 3 # $t5 =(k*n + j)*8

addu $t5, $a3, $t5 # $t5 = address of z[K][]]
Idcl $f4, 0($t5H) # $f4 = z[K]1L}]

“* Now, multiply y[1][K] by z[ k][] and add it to $F0

mul.d $f6, $f2, $f4 # $F6 = y[i]l[kl*z[K]1L]i]
add.d $f0, $f0, $f6 # $FfO = sum
addiu $t3, $t3, 1 # k =k +1
bne $t3, $a0, L3 # loop back 1T (k '= n)
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Matrix Multiplication Procedure - 3/3

¢ Calculate address of X[ 1][}J ] and store sum

multu $tl, $al # 1*size(row) = 1*n
mflo $t6 # $t6 = 1*n
addu $t6, $t6, $t2 # $t6 = I*n +
sl  $t6, $t6, 3 # $t6 =(i*n + j)*8
addu $t6, $al, $t6 # $t6 = address of x[i][j]l
sdcl $f0, 0($t6) # X[1][jJ] = sum

** Repeat outer loops: L2 (forj=...)and L1 (fori=...)
addiu $t2, $t2, 1 #3 =3 +1
bne $t2, $a0, L2 # loop L2 if (J = n)
addiu $t1, $t1, 1 #i1=1i+1
bne $t1, $a0, L1 # loop L1 if (i = n)

¢ Return:
jr $ra

Floating Point

# return
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