Integer Multiplication

and Division

ICS 233

Computer Architecture and Assembly Language
Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals
[Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Outline

*» Unsigned Multiplication
s Signed Multiplication
** Unsigned Division

% Signed Division

¢ Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 2

Unsigned Multiplication

*» Paper and Pencil Example:

Multiplicand 1100, = 12
Multiplier x 1101, = 13
1100 :
0000 Binary rnL.JItlpllcatlon Is easy
1100 0 x muIt!pI!cand =0 B
1100 1 x multiplicand = multiplicand
Product 10011100, = 156

¢ m-bit multiplicand x n-bit multiplier = (m+n)-bit product

“ Accomplished via shifting and addition

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 3

Version 1 of Multiplication Hardware

% Initialize Product =0

s Multiplicand is zero extended

<«

Multiplicand

shift left

64 bits

\/
64-bit ALU [e

/4

; 64 bits

—> shift right

Multiplier

32 bits Multiplier[0]

Integer Multiplication and Division

v

1a. Product = Product + Multiplicand

\4

2. Shift the Multiplicand Left 1 bit

\4

3. Shift the Multiplier Right 1 bit

32nd Repetition?

ICS 233 - KFUPM © Muhamed Mudawar slide 4

Multiplication Example (Version 1)

% Consider: 1100, x 1101, , Product = 10011100,

*» 4-bit multiplicand and multiplier are used in this example

*» Multiplicand is zero extended because it is unsigned

Iteration Multiplicand | Multiplier Product
0 | Initialize 00001100 1101 — 00000000
: Multiplier[0] = 1 => ADD ¥> 00001100

SLL Multiplicand and SRL Multiplier 00011000 0110
5 Multiplier[0] = 0 => Do Nothing — 00001100
SLL Multiplicand and SRL Multiplier 00110000 0011
Multiplier[0] = 1 => ADD ¥»00111100
3 SLL Multiplicand and SRL Multiplier 01100000 0001
, | Muttiplier(0] = 1=> ADD ¥+ 10011100
SLL Multiplicand and SRL Multiplier 11000000 0000

Integer Multiplication and Division

ICS 233 - KFUPM

© Muhamed Mudawar slide 5

Observation on Version 1 of Multiply

*» Hardware in version 1 can be optimized
*+ Rather than shifting the multiplicand to the left
Instead, shift the product to the right
Has the same net effect and produces the same results

** Reduce Hardware
< Multiplicand register can be reduced to 32 bits only

<> We can also reduce the adder size to 32 bits

*+ One cycle per iteration

< Shifting and addition can be done simultaneously

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 6

Version 2 of Multiplication Hardware

* Product = Hl and LO registers, HI=0
¢ Product is shifted right
*» Reduced 32-bit Multiplicand & Adder

=1
Multiplicand

=0
Multiplier[0]?
32 bits 132 bits v

HI = HI + Multiplicand

33 bits

Y

Shift Product = (HI,LO) Right 1 bit
_> shift right

Shift Multiplier Right 1 bit
LO : (Control)
write

—> shiftright 32" Repetition?

Multiplier Yes
: Multiplier[0]
32 bits

64 bits

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 7

Refined Version of Multiply Hardware

*» Eliminate Multiplier Register
¢ Initialize LO = Multiplier, HI=0

“ Product = HIl and LO registers

Multiplicand
32 bits 132 bits
V
32-bit ALU 422

\ 4

LO=Multiplier, HI=0

\4

HI = HI + Multiplicand

33 bits

Integer Multiplication and Division

—> shift right
LO Control
64 bits write
LO[0]

ICS 233 - KFUPM

Y

Shift Product = (HI,LO) Right 1 bit

No

© Muhamed Mudawar slide 8

Multiply Example (Refined Version)

% Consider: 1100, x 1101, , Product = 10011100,

*» 4-bit multiplicand and multiplier are used in this example

** 4-bit adder produces a 5-bit sum (with carry)

Iteration Multiplicand | Carry | Product = HI, LO
0 | Initialize (LO = Multiplier, HI=0) 1100 0000 1101
1 LO[0] = 1 => ADD L ¥4 (0 1100} 1101
Shift Right Product = (HI, LO) 1100 0110 0110

5 LO[0] = 0 => Do Nothing

Shift Right Product = (HI, LO) 1100 0011 0011
LO[0] = 1 => ADD L >+ (0 1111)0011
] Shift Right Product = (HI, LO) 1100 0111 1001
. LO[0] = 1 => ADD SR (N 0011)1001
Shift Right Product = (HI, LO) 1100 1001 1100

Integer Multiplication and Division

ICS 233 - KFUPM

© Muhamed Mudawar slide 9

Next . ..

*» Unsigned Multiplication
*» Signed Multiplication
¢ Unsigned Division

* Signed Division

¢ Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 10

Signed Multiplication

* So far, we have dealt with unsigned integer multiplication

*» Version 1 of Signed Multiplication

< Convert multiplier and multiplicand into positive numbers

» |f negative then obtain the 2's complement and remember the sign
< Perform unsigned multiplication
< Compute the sign of the product

< If product sign < 0 then obtain the 2's complement of the product

+» Refined Version:

< Use the refined version of the unsigned multiplication hardware
< When shifting right, extend the sign of the product

< If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 71

Signed Multiplication (Pencil & Paper)

*» Case 1: Positive Multiplier

Multiplicand 1100, = -4
Multiplier X 0101, = +5
Sign-extension { 11171100
100
Product 11101100, = -20
*» Case 2: Negative Multiplier
Multiplicand 1100, = -4
Multiplier X 1101, = -3
Sign-extension { 112')2')00

00100 (2°s complement of 1100)
Product 00001100, = +12

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 72

Signed Multiplication Hardware

> Similar to Unsigned Multiplier

s ALU produces a 33-bit result

< Multiplicand and HI are sign-extended

< Sign is the sign of the result

(Start)

\ 4

LO=Multiplier, HI=0

\ 4

Multiplicand First 31 iterations: HI = HI + Multiplicand
32 bits 32 bits Last iteration: HI = HI — Multiplicand

shift right

Control
64 bits write

LO[O]

Integer Multiplication and Division ICS 233 - KFUPM

Y

Shift Right Product = (HI, LO) 1 bit

32" Repetition?

Yes

© Muhamed Mudawar slide 73

Signed Multiplication Example
% Consider: 1100, (-4) x 1101, (-3), Product = 00001100,

¢ Multiplicand and HI are sign-extended before addition

*» Last iteration: add 2's complement of Multiplicand

Iteration Multiplicand | Sign | Product = HI, LO
0 | Initialize (LO = Multiplier) 1100 0000 1101
1 LO[0] = 1 => ADD SN EN 1100} 1101
Shift Product = (HI, LO) right 1 bit 1100 1110 0110
5 LO[0] = 0 => Do Nothing
Shift Product = (HI, LO) right 1 bit 1100 1111 0011
; LO[0] = 1 => ADD L >+ (1 1011)001 1
Shift Product = (HI, LO) right 1 bit ~ 1100 1101 1001
. LO[0] = 1 => SUB (ADD 2's compl) | » 0100 +——(0 00011001
Shift Product = (HI, LO) right 1 bit 0000 1100

Integer Multiplication and Division

ICS 233 - KFUPM

© Muhamed Mudawar slide 74

Next . ..

“* Unsigned Multiplication
“ Signed Multiplication
“* Unsigned Division

% Signed Division

¢ Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 75

Unsigned Division (Paper & Pencil)

10011, = 19 Quotient
Divisor 1011, | 11011001, = 217 Dividend

-1011”=’
10 Try to see how big a
101 number can be
subtracted, creating a
1010 digit of the quotient on
10100 each attempt
Dividend = -1011 :
Quotient x Divisor 10013 Binary d.ivision is
+ Remainder 10011 accomplished via
shifting and subtraction
217=19x 11 +8 -1011 2

1000, = 8 Remainder

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 76

First Division Algorithm & Hardware

< Initialize:
< Remainder = Dividend (0-extended) «

< Load Upper 32 bits of Divisor 1. Shift the Divisor Right 1 bit
< Quotient=0 Shift the Quotient Left 1 bit
Difference = Remainder — Divisor

—_— shift right
Divisor “ >0 <
64 bits
NV
64-bit ALU /‘/SUb 2. Remainder = Difference
Difference ‘ I sign . Set least significant bit of Quotient
Remainder rite " Control |
64 bits No

32nd Repetition?

< shift left
. 4—
Quotient |

32 bits set Isb

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 77

Division Example (Version 1)

% Consider: 1110,/ 0011, (4-bit dividend & divisor)
“* Quotient = 0100, and Remainder = 0010,

¢ 8-bit registers for Remainder and Divisor (8-bit ALU)

lteration Remainder| Divisor | Difference | Quotient
0 | Initialize 00001110 | 00110000 0000
1: SRL, SLL, Difference 00001110 | 00011000 | 11110110 0000
1 2: Diff < 0 => Do Nothing
1: SRL, SLL, Difference 00001110 | 00001100 | 00000010 0000
2 2: Rem = Diff, set Isb Quotient|] 00000010 0001
1: SRL, SLL, Difference 00000010 | 00000110 | 11111100 0010
3 2: Diff < 0 => Do Nothing
1: SRL, SLL, Difference 00000010 | 00000011 | 11111111 0100
4 2: Diff < 0 => Do Nothing

Integer Multiplication and Division

ICS 233 - KFUPM

© Muhamed Mudawar slide 78

Observations on Version 1 of Divide

*» Version 1 of Division hardware can be optimized
¢ Instead of shifting divisor right,
Shift the remainder register left
Has the same net effect and produces the same results

+* Reduce Hardware:

<> Divisor register can be reduced to 32 bits (instead of 64 bits)
<> ALU can be reduced to 32 bits (instead of 64 bits)

< Remainder and Quotient registers can be combined

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 79

Refined Division Hardware

“ Observation:
< Shifting remainder left does the

same as shifting the divisor right

s Initialize:

1.

Shift (Remainder, Quotient) Left
Difference = Remainder — Divisor

<> Quotient = Dividend, Remainder = 0

>0 <
Difference?

Remainder| Quotient Control

32 bits

shift left

32 bits

set Isb

Integer Multiplication and Division ICS 233 - KFUPM

Divisor . .
2. Remainder = Difference
32 bits Set least significant bit of Quotient
Vv sub l
32-bit ALU /</
. l | sign n
Difference 32" Repetition?
D S .
write

© Muhamed Mudawar slide 20

Division Example (Refined Version)

% Same Example: 1110, / 0011, (4-bit dividend & divisor)
“* Quotient = 0100, and Remainder = 0010,
*» 4-bit registers for Remainder and Divisor (4-bit ALU)

lteration Remainder| Quotient Divisor |Difference
0 | Initialize 0000 1110 0011

1: SLL, Difference 0001 «— 1100 0011 1110
1 2: Diff < 0 => Do Nothing

1: SLL, Difference 0011 <« 1000 0011 0000
2 2: Rem = Diff, set Isb Quotient] 0000 1001

1: SLL, Difference 0001 «— 0010 0011 1110
3 2: Diff < 0 => Do Nothing

1: SLL, Difference 0010 «— 0100 0011 1111
4 2: Diff < 0 => Do Nothing

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 21

Next . ..

“* Unsigned Multiplication
“ Signed Multiplication
** Unsigned Division

¢ Signed Division

¢ Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 22

Sighed Division
“ Simplest way is to remember the signs

¢ Convert the dividend and divisor to positive

< Obtain the 2's complement if they are negative
¢ Do the unsigned division

s Compute the signs of the quotient and remainder
< Quotient sign = Dividend sign XOR Divisor sign

< Remainder sign = Dividend sign

** Negate the quotient and remainder if their sign is negative

< Obtain the 2's complement to convert them to negative

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 23

Signed Division Examples

1. Positive Dividend and Positive Divisor

< Example: +17 / +3 Quotient =+5 Remainder = +2

2. Positive Dividend and Negative Divisor
< Example: +17 /-3 Quotient = -5 Remainder = +2

3. Negative Dividend and Positive Divisor
< Example: =17/ +3 Quotient =-5 Remainder = -2

4. Negative Dividend and Negative Divisor
< Example: -17 /-3 Quotient =+5 Remainder = -2

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 24

Next . ..

*» Unsigned Multiplication
* Signed Multiplication
¢ Unsigned Division

% Signed Division

¢ Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 25

Multiplication in MIPS

s Two Multiply instructions
< mult $s1,$s2 Signed multiplication
< multu $sl1,%$s2 Unsigned multiplication

¢ 32-bit multiplication produces a 64-bit Product 5
$1

*» Separate pair of 32-bit registers .
< HI = high-order 32-bit $31

|
< LO = low-order 32-bit Multiply
< Result of multiplication is always in HI & LO Divide
——

* Moving data from HI/LO to MIPS registers o 1 o
< mfhi Rd (move from HI to Rd)
< mflo Rd (move from LO to Rd)

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 26

Division in MIPS

+* Two Divide instructions

< div $s1,%$s2 Signed division
< divu $s1,%s2 Unsigned division
¢ Division produces quotient and remainder %

$1

*» Separate pair of 32-bit registers .
< HI = 32-bit remainder $31

|
< LO = 32-bit quotient Multiply
< If divisor is O then result is unpredictable Divide
——

* Moving data to HI/LO from MIPS registers o 1 o
< mthi Rs (move to HI from Rs)
< mtlo Rs (move to LO from Rs)

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 27

Integer Multiply/Divide Instructions

Instruction Meaning Format

mult Rs,Rt | Hi,Lo=Rs xRt |opf=0| Rs® | Rt® 0 0 0x18
multu Rs, Rt | Hi, Lo=Rs xRt | opf=0| Rs® | Rt® 0 0 0x19
divi. Rs,Rt | Hi,Lo=Rs/Rt |opf=0| Rs® | Rt® 0 0 Ox1a
divu Rs,Rt | Hi,Lo=Rs/Rt |opf=0| Rs® | Rt® 0 0 Ox1b
mfhi Rd Rd = Hi opb=0]| O 0O |[Rd®| O 0x10
mflo Rd Rd = Lo opb=0]| O 0O |Rd®| O 0x12
mthi Rs Hi =Rs opf=0| Rs®| O 0 0 0x11
mtlo Rs Lo =Rs op=0| Rs® | O 0 0 0x13

* Signed arithmetic: mult, div (Rs and Rt are signed)
< LO = 32-bit low-order and HI = 32-bit high-order of multiplication
< LO = 32-bit quotient and HI = 32-bit remainder of division

¢ Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)

*» NO arithmetic exception can occur

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 28

Integer to String Conversion

“+ Objective: convert an unsigned 32-bit integer to a string

*» How to obtain the decimal digits of the number?
<> Divide the number by 10, Remainder = decimal digit (0 to 9)
<> Convert decimal digit into its ASCII representation ('0' to '9'")
< Repeat the division until the quotient becomes zero

<> Digits are computed backwards from least to most significant

> Example: convert 2037 to a string
< Divide 2037/10 quotient =203 remainder=7 char="7"
< Divide 203/10 quotient=20 remainder =3 char ="3'
< Divide 20/10 quotient = 2 remainder =0 char="0'
< Divide 2/10 quotient = 0 remainder =2 char="2'

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 29

Integer to String Procedure

He e e
1Int2str: Converts an unsigned integer Into a string
Parameters: $a0 = integer to be converted
$al = string pointer (can store 10 digits)
H———_— -
int2str
move $tO, $al # $t0 = dividend = integer value
li $t1, 10 # $tl = divisor = 10
addiu $al, $al, 10 # start at end of string
sb $zero, 0(%$al) # store a NULL byte
convert:
divu $t0, $tl # LO = quotient, Hl = remainder
mflo $t0 # $t0 = quotient
mfhi $t2 # $t2 = remainder
ori $t2, $t2, 0x30 # convert digit to a character
addiu $al, $al, -1 # point to previous char
sb $t2, 0(%al) # store digit character
bnez $t0, convert # loop 1T quotient i1s not O

jr $ra

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar slide 30

