Instruction Set Architecture

ICS 233

Computer Architecture and Assembly Language
Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals
[Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Outline

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
* Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 2

Instruction Set Architecture (ISA)

+» Critical Interface between hardware and software

* An ISA includes the following ...

< Instructions and Instruction Formats
= Data Types, Encodings, and Representations
= Addressing Modes: to address Instructions and Data

» Handling Exceptional Conditions (like division by zero)

< Programmable Storage: Registers and Memory

“ Examples (Versions) First Introduced in
< Intel (8086, 80386, Pentium, ...) 1978
< MIPS (MIPS I, II, 1, IV, V) 1986

< PowerPC (601, 604, ...) 1993

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 3

Instructions

¢ Instructions are the language of the machine

** We will study the MIPS instruction set architecture
< Known as Reduced Instruction Set Computer (RISC)

< Elegant and relatively simple design
< Similar to RISC architectures developed in mid-1980’s and 90’s

<> Very popular, used in many products
= Silicon Graphics, ATI, Cisco, Sony, etc.

<> Comes next in sales after Intel IA-32 processors

= Almost 100 million MIPS processors sold in 2002 (and increasing)

¢ Alternative design: Intel 1A-32

< Known as Complex Instruction Set Computer (CISC)

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 4

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
* Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 5

Overview of the MIPS Processor

32 General
Purpose ---
Registers

Arithmetic & ||

Logic Unit

4 bytes per word

Memory

Up to 232 bytes = 230 words

32 Floating-Point
-- Reqisters

Floating-Point

EIU $0 | Execution & FPU FO Floating
$1 Integer Unit F1 Point Unit
—————————— $2 | (Main proc) F2_| (Coproc 1)
%31 Integer FP —
A A A
ALU A mulidiv Aith F==3--
P
Rl Hi Lo
v — TMU [Badvaddr Trap &
Status | Memory Unit
I ‘ Cause | (Coproc 0)
nteger EPC

Multiplier/Divider

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM

" Arithmetic Unit

© Muhamed Mudawar slide 6

MIPS General-Purpose Registers

¢ 32 General Purpose Registers (GPRS)

< Assembler uses the dollar notation to name registers
= $0 is register 0, $1 is register 1, ..., and $31 is register 31

< All reqgisters are 32-bit wide in MIPS32 | $0 = $zero || $16 = $s0

_ _ $1 = $at $17 = $s1

< Register $0 is always zero $2 = $V0 $18 = $s2

)) i $3 = $vi $19 = $s3

= Any value written to $0 is discarded $4 = a0 $20 = $54

. . $5 = %al $21 = $s5
“» Software conventions %6 = $a2 || $22 = $s6
) $7 = %a3 $23 = $s7

<> There are many registers (32) $8 = $t0 $04 = S8

: . $9 = $tl $25 = $t9

< Software defines names to all registers —-——=- $96 = SK0

= To standardize their use in programs WL - A 20 = e

$12 = $t4 $28 = $gp

< Example: $8 - $15 are called $t0 - $t7 | 313 = 15 $29 = $sp

$14 = $t6 $30 = $fp

» Used for temporary values $15 = $t7 $31 = $ra

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 7

MIPS Register Conventions

“ Assembler can refer to registers by name or by number

< It is easier for you to remember registers by name

<> Assembler converts register name to its corresponding number

Name Register Usage

$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use

$v0 - $vl $2 — $3 Result values of a function

$a0 — $a3 $4 — $7 Arguments of a function

$t0 — $t7 $8 — $15 | Temporary Values

$s0 — $s7 $16 — $23 | Saved registers (preserved across call)
$t8 — $19 $24 — $25 | More temporaries

$kO — $k1 $26 — $27 | Reserved for OS kernel

$gp $28 Global pointer (points to global data)
$sp $29 Stack pointer (points to top of stack)
$Tp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 8

Instruction Formats

¢ All Instructions are 32-bit wide. Three instruction formats:

** Register (R-Type)

< Register-to-register instructions

<> Op: operation code specifies the format of the instruction

Op®

Rs®

Rt°

Rd®

sa® funct®

* Immediate (I-Type)

< 16-bit immediate constant is part in the instruction

Op® Rs® Rt° immediate?®
s Jump (J-Type)
<> Used by jump instructions
Op® immediate?®

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 9

Instruction Categories

*» Integer Arithmetic
< Arithmetic, logical, and shift instructions

> Data Transfer
<> Load and store instructions that access memory
< Data movement and conversions

* Jump and Branch
< Flow-control instructions that alter the sequential sequence

¢ Floating Point Arithmetic
<> Instructions that operate on floating-point registers

** Miscellaneous
< Instructions that transfer control to/from exception handlers
< Memory management instructions

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 10

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
* Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 71

R-Type Format

Op® Rs® Rt° Rd°® sa® funct®

“ Op: operation code (opcode)
< Specifies the operation of the instruction
< Also specifies the format of the instruction
* funct: function code — extends the opcode
< Up to 2° = 64 functions can be defined for the same opcode
< MIPS uses opcode 0 to define R-type instructions
*» Three Register Operands (common to many instructions)
< Rs, Rt: first and second source operands

<> Rd: destination operand
< sa: the shift amount used by shift instructions

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 72

Integer Add /Subtract Instructions

Instruction
add $s1, $s2, $s3

Meaning
$s1 = $s2 + $s3

op=0

R-Type Format

rs = $s2

rt=$s3

rd = $s1

sa=0

f = 0x20

addu $s1, $s2, $s3| $s1 = $s2 + $s3

op=0

rs = $s2

rt=$s3

rd = $s1

sa=0

f=0x21

sub $s1, $s2, $s3| $s1 = $s2 — $s3

op=0

rs = $s2

rt=$s3

rd = $s1

sa=0

f = 0x22

subu $s1, $s2, $s3| $s1 = $s2 — $s3

op=0

rs = $s2

rt=$s3

rd = $s1

sa=0

f = 0x23

*» add & sub: overflow causes an arithmetic exception

< In case of overflow, result is not written to destination register

* addu & subu: same operation as add & sub
< However, no arithmetic exception can occur

< Overflow is ignored

* Many programming languages ignore overflow
< The + operator is translated into addu
<> The — operator is translated into subu

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 73

Addition/Subtraction Example

% Consider the translation of: f = (g+h) — (i+))

s Compiler allocates registers to variables
< Assume that f, g, h, i, and j are allocated registers $s0 thru $s4
<> Called the saved registers: $s0 = $16, $s1 = $17, ..., $s7 = $23
¢ Translation of: f = (g+h) — (i+])

addu $t0, $s1, $s2 # $t0 = g + h
addu $t1, $s3, $s4 # $tl = 1 + j
subu $s0, $t0, $t1 # f = (g+th)-(i+})

<> Temporary results are stored in $t0 = $8 and $t1 = $9

% Translate: addu $t0,%$s1,%$s2 to binary code

op rs=%sl rt=%s2 rd=$t0 sa func
 Solution: 000000 | 10001 | 10010 | 01000 | 00000 | 100001

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 74

Logical Bitwise Operations

¢ Logical bitwise operations: and, or, xor, nor

X|y|xandy X|y| xory X |y |XXxory X|y|Xnory
0|0 0 0|0 o) 0|0 0 0|0 1
0|1 0 01 1 0|1 1 0|1 o)
110 0 1(0 1 110 1 1(0 o)
1(1 1 11 1 1(1 0) 11 0)

«» AND Instruction is used to clear bits: xand 0 =0
» OR Instruction iIsusedto set hits: xor1 =1
¢+ XOR instruction is used to toggle bits: x xor 1 = not x

** NOR Instruction can be used as a NOT, how?
< nor $s1,%$s2,$s2 is equivalentto not $sl1,%$s2

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 75

Logical Bitwise Instructions

Instruction

Meaning

R-Type Format

and $s1, $s2, $s3

$sl = $s2 & $s3

op=0

rs = $s2

rt= $s3

rd = $s1

n
Q

f = 0x24

or $s1, $s2, $s3

$s1 = $s2 | $s3

op=0

rs = $s2

rt=$s3

rd = $s1

wn
Q

f = 0x25

xor $si1, $s2, $s3

$s1 = $s2 N $s3

op=0

rs = $s2

rt=$s3

rd = $s1

wn
Q

f = 0x26

nor $sl, $s2, $s3 |$sl = ~($s2|$s3)

op=0

rs = $s2

rt= $s3

rd = $s1

n
Q

f = 0x27

“» Examples:

Assume $s1 = Oxabcdl234 and $s2 = OxFFFFO000

and $s0,%$sl1,%$s2 # $s0 = Oxabcd0000
or $s0,%$s1,$s2 # $sO0 = OxFFfFf1234
xor $s0,%$s1,$s2 # $sO0 = 0x54321234
nor $s0,%$sl,%$s2 # $sO0 = 0x0000edcb

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 76

Shift Operations

*» Shifting Is to move all the bits in a register left or right
> Shifts by a constant amount: sll, srl, sra

< sl 1/srl mean shift left/right logical by a constant amount

< The 5-bit shift amount field is used by these instructions
<> sra means shift right arithmetic by a constant amount

< The sign-bit (rather than 0) is shifted from the left

sl < 32-bit register >
shift-out MSB < <1~ <<« <+ T <« <« <+ <+ shift-in O
srli
shift-in O —|/ 117171 T T T 1> 1 shift-out LSB
Sra
shift-in sign-bit > 1T 1> 171" T > 1" 1> 1 shift-out LSB

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 77

Instruction

Shift Instructions

sl

$s1,$s2,10

Meaning
$s1 = $s2 << 10

op=0

R-Type Format

rs=0

rt = $s2

rd = $s1

sa=10

srl

$s1,$s2,10

$s1 = $s2>>>10

op=0

rs=0

rt=$s2

rd = $s1

sa=10

sra

$s1, $s2, 10

$s1 = $s2 >> 10

op=0

rs=0

rt=$s2

rd = $s1

sa=10

sllv

$s1,$s2,$s3

$s1 = $s2 << $s3

op=0

rs = $s3

rt = $s2

rd = $s1

sa=0

srlv

$s1,$s2,$s3

$s1 = $s2>>>%$s3

op=0

rs = $s3

rt=$s2

rd = $s1

sa=0

srav

$s1,$s2,$s3

$s1 = $s2 >> $s3

op=0

rs = $s3

rt=$s2

rd = $s1

sa=0

— | == ||]|—
I
~N|O|IR~IWIN|IO

* Shifts by a variable amount: sllv, srlv, srav
< Same as sl 1, srl, sra, but a register is used for shift amount

% Examples: assume that $s2 = Oxabcd1234, $s3 = 16
$s1,%$s2,8
sra %$sl1,%s2,4
sriv $s1,%$s2,$s3

sl

$s1
$s1
$s1

$s2<<8
$s2>>4
$s2>>>$s3 $sl

$s1
$s1

0Oxcd123400
Oxfabcdl23
Ox0000abcd

S

0p=000000

rs=$s3=10011

rt=$s2=10010

rd=$s1=10001

sa=00000

f=000110

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 78

Binary Multiplication

» Shift-left (sh1) instruction can perform multiplication

< When the multiplier is a power of 2

** You can factor any binary number into powers of 2

< Example: multiply $s1 by 36

= Factor 36 into (4 + 32) and use distributive property of multiplication

<> $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

sl $t0, $s1, 2 - $t0 = $s1 * 4
sl $t1, $s1, 5 > $tl = $s1 * 32
addu $s2, $t0, $tl > $s2 = $s1 * 36

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 79

Your Turn. ..

Multiply $s1 by 26, using shift and add instructions
Hint: 26 =2+ 8 + 16

sl $t0, $s1, 1 - $t0 = $s1 * 2
sl $t1, $s1, 3 - $tl = $s1 * 8
addu $s2, $t0, $tl : $s2 = $s1 * 10
sl $t0, $s1, 4 . $t0 = $s1 * 16
addu $s2, $s2, $tO ; $s2 = $s1 * 26
Multiply $s1 by 31, Hint: 31 =32-1

sl $s2, $s1, 5 : $s2 = $s1 * 32
subu $s2, $s2, $s1 : $s2 = $s1 * 31

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 20

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
** |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
* Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 21

I-Type Format

+» Constants are used quite frequently in programs
<> The R-type shift instructions have a 5-bit shift amount constant
< What about other instructions that need a constant?

¢ I-Type: Instructions with Immediate Operands

Op® Rs® Rt° immediatel®

¢ 16-bit immediate constant is stored inside the instruction
< Rs is the source register number
< Rt is now the destination register number (for R-type it was Rd)

s Examples of I-Type ALU Instructions:
< Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5
< OR immediate: ori $sl1l, $s2, 5 # $sl1 = $s2 | 5

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 22

I-Type ALU Instructions

Instruction Meaning |-Type Format

addi $s1, $s2,10 [$s1=$s2+10 (op=0x8|rs=$s2| rt=$sl imm16 =10
addiu $s1, $s2,10 [$s1=$s2+10 (op=0x9 |rs=$s2| rt = $s1 imm16 =10
andi $s1, $s2,10 | $s1 =$s2 & 10 (op=0xc [rs=$s2| rt = $s1 imm16 =10
ori $s1, $s2,10 | $s1=$s2 |10 |op=0xd|rs=$s2| rt = $sl imm® =10
xori $s1, $s2,10 [$s1=$s2710 |op=0xe [rs=$s2| rt = Psl imm16 =10
lui $s1, 10 $s1=10<< 16 |op = Oxf 0 rt = $sil imm16é = 10

* addi: overflow causes an arithmetic exception

< In case of overflow, result is not written to destination register
* addiu: same operation as addi but overflow is ignored

*» Immediate constant for addi and addiu is signed

<> No need for subi or subiu instructions

*» Immediate constant for andi, ori, xori is unsigned

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 23

Examples: I-Type ALU Instructions

< Examples: assume A, B, C are allocated $s0, $s1, $s2

A = B+5; translated as addiu $s0,%$s1,5
C = B-1; translated as addiu $s2,%s1,-1

@ op=001001{rs=$s1=10001|rt=$s2=10010| imm =-1=11111111211111111

A = B&OxF; translatedas andi $s0,%$sl,0xf
C = B|]OxfF; translatedas ori $s2,$s1,0xF
C =5; translated as ori $s2,%$zero,5
A = B; translated as ori $s0,%$s1,0

** No need for sub1i, because addi has signed immediate

% Register 0 ($zero) has always the value 0O

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 24

32-bit Constants

“ |-Type instructions can have only 16-bit constants

Op® Rs® Rt° immediate®

“* What if we want to load a 32-bit constant into a register?

% Can’'t have a 32-bit constant in I-Type instructions ®

< We have already fixed the sizes of all instructions to 32 bits

+¢» Solution: use two instructions instead of one ©
< Suppose we want: $s1=0xAC5165D9 (32-bit constant)

< lul: load upper immediate load upper clear lower
16 bits 16 bits

lui $s1,0xAC51 $s1=%$17 | OXAC51 | Ox0000

ori $sl1,%$sl1,0x65D9 $s1=%$17 | OXAC51 | Ox65D9

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 25

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
* Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 26

J-Type Format

Op® immediate26

s J-type format is used for unconditional jump instruction:
J 1abel # jump to label

1abel:
¢+ 26-bit Immediate value is stored in the instruction

< Immediate constant specifies address of target instruction

** Program Counter (PC) is modified as follows:

— . . least-significant
< Next PC = [pc* immediate?26 00| 2 bits are 00

< Upper 4 most significant bits of PC are unchanged

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 27

Conditional Branch Instructions

** MIPS compare and branch instructions:
beqg Rs,Rt, label branch to label if (Rs == Rt)
bne Rs,Rt, label branch to label if (Rs = Rt)
** MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs, label branch to label if (Rs < 0)
bgtz Rs, label branch to label if (Rs > 0)
blez Rs, label branch to label if (Rs <= 0)
bgez Rs, label branch to label if (Rs >= 0)

** No need for begz and bnez instructions. Why?

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 28

Set on Less Than Instructions

** MIPS also provides set on less than instructions
slt rd,rs,rt f(rs<rt)rd=1elserd=0
sltu rd,rs,rt unsigned <
slti rt,rs,im® if(rs<im®rt=1lelsert=0

sltiu rt,rs,im® unsigned <

* Signed / Unsigned Comparisons
Can produce different results
Assume $s0 = land $s1 = -1 = OxFFFFrffff
st $t0,$s0,$sl resultsin $t0 = O
stlu $t0,$s0,%$sl resultsin $t0 = 1

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 29

More on Branch Instructions

** MIPS hardware does NOT provide instructions for ...

blt, bltu branchiflessthan (signed/unsigned)
ble, bleu branchifless or equal (signed/unsigned)
bgt, bgtu branch if greater than (signed/unsigned)
bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

s How to implement: blt $s0,%s1, label
% Solution: (st $at,$s0,$sl
{ bne $at,$zero, label

4

L)

» How to implement: ble $s2,%$s3, label
» Solution: (slt $at,$s3, $s2
{ beq $at,$zero, label

* o

L)

L)

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 30

Pseudo-Instructions

*» Introduced by assembler as if they were real instructions

< To facilitate assembly language programming

Pseudo-Instructions Conversion to Real Instructions
move $sl1l, $s2 addu $sl1, $zero, $s2
not $s1, $s2 nor $s1, $s2, $zero
r $s1, Oxabcd ori $s1, $zero, Oxabcd

Iui $at, Oxabcd
ori $s1, $at, 0x1234

sgt $sl1l, $s2, $s3 slt $s1, $s3, $s2

slt $ats $Sl’ $52
blt $s1, $s2, label bne $at, $zero, label

1 $s1, Oxabcdl234

% Assembler reserves %$at = $1 for its own use
< $at is called the assembler temporary register

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 31

Jump, Branch, and SLT Instructions

| label jump to label opé =2 imm?26

beqg rs,rt, label |{branchif (rs==rt) |op®=4| rs> | rt° imm?16

bne rs, rt, label |branchif (rs!=rt) |op®=5| rs® | rt® imm?16

blez rs, label branch if (rs<=0) |op®=6] rs® 0 imm?16

bgtz rs, label branchif rs>0) |op®=7] rs® 0 imm16

bltz rs, label branchif rs<0) |opb=1] rs® 0 imm16
bgez rs, label branch if (rs>=0) |op®=1] rs® 1 imm?16
Instruction Meaning Format

slt rd,rs,rt rd=(rs<rt?1:0) |op®=0]| rs® | rt> | rd®> | O | Ox2a
sltu rd, rs, rt rd=(rs<rt?1:0) |op®=0| rs® | rt® | rd®> | O | Ox2b
slti rt, rs, Imm16| rt=(rs<imm?1:0) Oxa rs® rtd imm?16

sltiu rt, rs, Imm16| rt=(rs<imm?1:0) Oxb rs® | rtd imm16

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 32

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

“ Translating If Statements and Boolean Expressions
* Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 33

Translating an IF Statement

*» Consider the following IF statement:
iIT (a==b) c=d+ e; elsec =d - e;

Assume that a, b, c, d, e are in $s0, ..., $s4 respectively

«» How to translate the above IF statement?

bne $s0, $s1, else
addu $s2, $s3, $s4
J exit

else: subu $s2, $s3, $s4
exit: i

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 34

Compound Expression with AND

* Programming languages use short-circuit evaluation

» If first expression is false, second expression is skipped

IT (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...

bgtz $s1, L1 # Ti1rst expression
J next # skip 1f false

L1: bltz $s2, L2 # second expression
] next # skip 1T false

L2: addiu $s3,%$s3,1 # both are true
next:

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 35

Better Implementation for AND

IT (($s1 > 0) && ($s2 < 0)) {$s3++;}

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5to 3

Better Implementation ...
blez $sl1, next # skip 1T false
bgez $s2, next # skip 1f false

addiu $s3,%$s3,1 # both are true
next:

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 36

Compound Expression with OR

*» Short-circuit evaluation for logical OR

» If first expression is true, second expression is skipped

1T ((Bsl > $s2) || ($s2 > $s3)) {$s4 = 1;}

¢ Use fall-through to keep the code as short as possible

bgt $s1, $s2, L1 # yes, execute 1T part
ble $s2, $s3, next # no: skip if part

L1: 1 $s4, 1 # set $s4 to 1

next:

* bgt, ble, and 11 are pseudo-instructions

< Translated by the assembler to real instructions

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 37

Your Turn. ..

*» Translate the IF statement to assembly language

% $s1 and $s2 values are unsigned

if($s1 <= $s2) {
$s3 = $s4

}

bgtu $s1, $s2, next
move $s3, $s4

next:

% $s3, $s4, and $s5 values are signed

it (($s3 <= $s4) &&
($s4 > $s5)) {
$s3 = $s4 + $s5

}

bgt $s3, $s4, next
ble %$s4, $s5, next
addu $s3, $s4, $sbH

next:

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 38

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
“ Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 39

Load and Store Instructions

¢ Instructions that transfer data between memory & registers

¢ Programs include variables such as arrays and objects

¢ Such variables are stored in memory

*+» Load Instruction:

< Transfers data from memory to a register

+» Store Instruction:

< Transfers data from a register to memory

load

Registers

store

Memory

“* Memory address must be specified by load and store

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 40

Load and Store Word

¢ Load Word Instruction (Word = 4 bytes in MIPS)
Iw Rt, 1mm®(Rs) # Rt = MEMORY[Rs+immic]

+» Store Word Instruction
imm®(Rs) # MEMORY[Rs+immi®] = Rt

sw Rt,

“* Base or Displacement addressing is used

< Memory Address = Rs (base) + Immediate® (displacement)

< Immediate?® is sign-extended to have a signed displacement

Base or Displacement Addressing

Op®

Rs>

Rt°

immediatel6

A 4

Base address

§-

Memory Word

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 47

Example on Load & Store

* Translate A[1]=A[2] +5 (A is an array of words)

<> Assume that address of array A is stored in register $s0

Iw $s1, 8($s0) # $s1 = A[2]
addiu $s2, $s1, 5 # $s2 = A[2] + 5
SwW $s2, 4($s0) # A[1] = $s2
*» Index of A[2] and A[1] should be multiplied by 4. Why?
Registers Memory
$s0 = $16 addrés.s. of A W A[3] A+12
$s1 =$17 | value of A[2] A[2] A+8
$s2=9$18| A[2]+5 A[1] A+4
sW Al0] | A

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 42

Load and Store Byte and Halfword

*» The MIPS processor supports the following data formats:
< Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

¢ Load & store instructions for bytes and halfwords
< Ib = load byte, Ibu = load byte unsigned, sb = store byte
< Ih =load half, lhu = load half unsigned, sh = store halfword

*» Load expands a memory data to fit into a 32-bit register
¢ Store reduces a 32-bit register to fit in memory
« 32-bit Register >

S sign — extend S|s b
O zero - extend 0 bu
S sign — extend S|s h
O zero - extend 0 hu

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 43

Load and Store Instructions

Instruction Meaning I-Type Format

b rt, imm6(rs) | rt = MEM[rs+imm16] | Ox20 | rs® rt° imm?16
lh rt, imm?e(rs) | rt = MEM[rs+imm1%] | Ox21 | rs® e imm?16
lw rt, imm6(rs) | rt = MEM[rs+imm16] | Ox23 | rs® rt° imm?16
lbu rt, imme(rs) | rt = MEM[rs+imm1%] | Ox24 | rs® r imm?16
lhu rt, immi%(rs) | rt = MEM[rs+imm16] | Ox25 | rs® rt> imm16
sb rt, immi6(rs) | MEM[rs+imm16] =rt | Ox28 | rs° rt> imm16
sh rt, immi5(rs) | MEM[rs+imm16] =rt | Ox29 | rs® e imm?16
sw rt, immi(rs) | MEM[rs+immi6] =rt | Ox2b | rs® rt> imm16

*» Base or Displacement Addressing is used

< Memory Address = Rs (base) + Immediate'® (displacement)

*» Two variations on base addressing
< If Rs =%zero =0then Address = Immediatel® (absolute)
< If Immediate'® = 0 then Address = Rs (register indirect)

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 44

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
* Load and Store Instructions

¢ Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 45

Translating a WHILE Loop

“ Consider the following WHILE statement: Memory
1 = 0; while (A[1] = k) 1 = 1+]1; A Asax
Where A is an array of integers (4 bytes per element) A2l | A
Assume address A, i, k in $s0, $s1, $s2, respectively ’;B} o
“* How to translate above WHILE statement?

Xor $s1, $s1, $si1 # 1 =0

move $t0, $sO # $t0 = address A
loop: Iw $tl, 0($t0) # $t1 = A[i]

beq $tl, $s2, exit # exit it (A[i]== k)

addiu $s1, $si1, 1 # 1 = 1+1

sl $t0, $s1, 2 # $t0 = 4*

addu $t0, $s0, $tO # $t0 = ddress A[i]

J loop
exit: -

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 46

Using Pointers to Traverse Arrays

* Consider the same WHILE loop:
1 = 0; while (A[1] '= k) 1 = 1+]1;
Where address of A, i, k are in $s0, $s1, $s2, respectively
*» We can use a pointer to traverse array A

Pointer is incremented by 4 (faster than indexing)

move $t0, $sO # $t0 = $sO = addr A

J cond # test condition
loop: addiu $sl1, $s1, 1 # 01 = i+l

addiu $t0, $t0, 4 # point to next
cond: lw $tl, 0($t0) # $tl = A[1]

bne $tl, $s2, loop # loop 1T A[1]!'= k

“ Only 4 instructions (rather than 6) in loop body

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 47

Copying a String

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

1 = 0;

do {target[i1]=source[1];

i++;} while (source[i]!=0);

move $tO,
move $t1,
L1: 1b $t2,
sb $t2,
addiu $tO,
addiu $t1,
bne $t2,

$s0
$s1
0($t0)
0($tl)
$t0, 1
$t1, 1

$t0 = pointer to source
$tl1 = pointer to target
load byte into $t2

store byte i1nto target
1ncrement source pointer
1ncrement target pointer

$zero, L1 # loop until NULL char

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 48

Summing an Integer Array

sum = O;
for (1=0; 1<n; §++) sum

sum + A[1];

Assume $s0 = array address, $s1 = array length = n

move $t0, $sO

Xor $t1, 1, $tl
Xor $s2, $s2, $s2

L1: Iw $t2, 0(%$t0)

addu $s2, $s2, $t2
addiu $tO, $t0, 4
addiu $t1, $t1, 1
bne $t1, $si1, L1

H OH O HF HF OH R

$t0
$tl1 =
$s2 =
$t2 =
sum =
point
1++

address Ali1]
1 =0

sum = 0O

All]

sum + A[1]
to next A[i1]

floop 1f (1 '=n)

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 49

Next . ..

“* Instruction Set Architecture

“* Overview of the MIPS Processor

“* R-Type Arithmetic, Logical, and Shift Instructions
“ |-Type Format and Immediate Constants

“ Jump and Branch Instructions

¢ Translating If Statements and Boolean Expressions
* Load and Store Instructions

* Translating Loops and Traversing Arrays

*» Addressing Modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 50

Addressing Modes

“* Where are the operands?

“ How memory addresses are computed?

Immediate Addressing

n
>

Opb | Rs® | Rt° immediate?®
Register Addressing
Op® | Rs® | Rt® | Rd® | sa® | funct®

Operand is a constant

Operand is in a register

\ 4

Base or Displacement Addressing

Op®

Rs®

Rt°

immediatel6

Register

Operand is in memory (load/store)

A 4

Register = Base address

Bﬂe | Halfword Word

O

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 51

Branch / Jump Addressing Modes

PC-Relative Addressing

Used for branching (beq, bne, ...)

Opé | Rs® | Rt° immediatel6 |
Word = Target Instruction
PC30 00
|
Target Instruction Address — I i
PC = PC + 4 x (1 + immediatel) mmediate
_ _ Used by jump instruction
Pseudo-direct Addressing
Op¢ immediate?6 1
@-» Word = Target Instruction
pC* pC2s 00 I
|
Target Instruction Address |PC*4 immediate2® 00

Instruction Set Architecture

ICS 233 — Computer Architecture and Assembly Language — KFUPM

© Muhamed Mudawar slide 52

Jump and Branch Limits

% Jump Address Boundary = 226 instructions = 256 MB
< Text segment cannot exceed 22° instructions or 256 MB

< Upper 4 bits of PC are unchanged

Target Instruction Address |PC4 immediate2¢ 00

¢ Branch Address Boundary

<> Branch instructions use |-Type format (16-bit immediate constant)

< PC-relative addressing: PC20 + immediate!® + 1 00

= Target instruction address = PC + 4x(1 + immediate15)

» During assembly: immediate=(Target address — PC)/4, where PC
contains address of next instruction

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 53

Jump and Branch Limits

During execution, PC contains the address of current instruction
(thus we add 1 to immediate?®).

Maximum branch limit is -21° to +215-1 instructions.

If immediate is positive => Forward Jump

If immediate is negative => Backward Jump

\/
< Example Forward Jump

During assembly:

0 Immediate=(Next-PC)/4=(20-12)/4=2
Again:4 During execution:
8 beq $s1,%$s2,Next PC=PC+4*(immediate+1)=8+4*(3)=20
12
16 bne $s1,%$zero,Again Backward Jump
Next:- 20 During assembly:

Immediate=(Again-PC)/4=(4-20)/4=-4
During execution:
PC=PC+4*(immediate+1)=16+4*(-3)=4

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 54

Summary of RISC Design

¢ All instructions are typically of one size
¢ Few instruction formats

¢ All operations on data are register to register
<> Operands are read from registers

<> Result is stored in a register

*» General purpose integer and floating point registers
< Typically, 32 integer and 32 floating-point registers

** Memory access only via load and store instructions

<> Load and store: bytes, half words, words, and double words

** Few simple addressing modes

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 55

Four Design Principles

Simplicity favors regularity
< Fix the size of instructions (simplifies fetching & decoding)

< Fix the number of operands per instruction

» Three operands is the natural number for a typical instruction

Smaller is faster

<> Limit the number of registers for faster access (typically 32)

Make the common case fast
< Include constants inside instructions (faster than loading them)

<> Design most instructions to be register-to-register

Good design demands good compromises

< Fixed-size instructions compromise the size of constants

Instruction Set Architecture ICS 233 — Computer Architecture and Assembly Language — KFUPM © Muhamed Mudawar slide 56

