Instruction Set Architecture

ICS 233

Computer Architecture and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals
[Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Outline

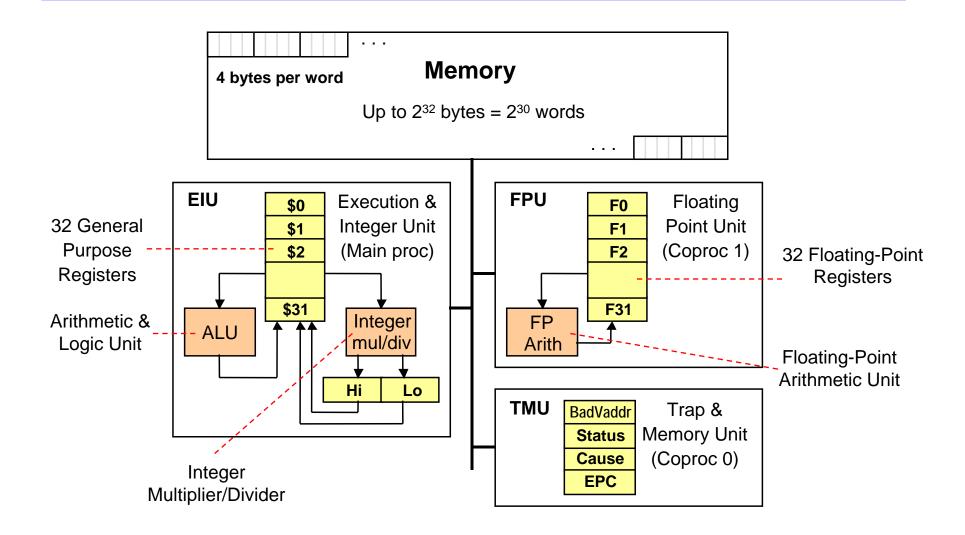
- Instruction Set Architecture
- Overview of the MIPS Processor
- * R-Type Arithmetic, Logical, and Shift Instructions
- I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

Instruction Set Architecture (ISA)

- Critical Interface between hardware and software
- ❖ An ISA includes the following ...
 - ♦ Instructions and Instruction Formats
 - Data Types, Encodings, and Representations
 - Addressing Modes: to address Instructions and Data
 - Handling Exceptional Conditions (like division by zero)
 - ♦ Programmable Storage: Registers and Memory

Examples	(Versions)	First Introduced in
♦ Intel	(8086, 80386, Pentium,)	1978
→ MIPS	(MIPS I, II, III, IV, V)	1986
→ PowerPC	(601, 604,)	1993

Instruction Set Architecture


Instructions

- Instructions are the language of the machine
- We will study the MIPS instruction set architecture
 - ♦ Known as Reduced Instruction Set Computer (RISC)
 - → Elegant and relatively simple design
 - ♦ Similar to RISC architectures developed in mid-1980's and 90's
 - ♦ Very popular, used in many products
 - Silicon Graphics, ATI, Cisco, Sony, etc.
 - ♦ Comes next in sales after Intel IA-32 processors
 - Almost 100 million MIPS processors sold in 2002 (and increasing)
- ❖ Alternative design: Intel IA-32
 - Known as Complex Instruction Set Computer (CISC)

Next ...

- Instruction Set Architecture
- Overview of the MIPS Processor
- R-Type Arithmetic, Logical, and Shift Instructions
- I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

Overview of the MIPS Processor

MIPS General-Purpose Registers

❖ 32 General Purpose Registers (GPRs)

- ♦ Assembler uses the dollar notation to name registers
 - \$0 is register 0, \$1 is register 1, ..., and \$31 is register 31
- ♦ All registers are 32-bit wide in MIPS32
- ♦ Register \$0 is always zero
 - Any value written to \$0 is discarded

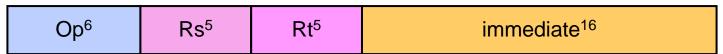
Software conventions

- → There are many registers (32)
- ♦ Software defines names to all registers
 - To standardize their use in programs
- - Used for temporary values

\$0 = \$zero	\$16 = \$s0
\$1 = \$at	\$17 = \$s1
\$2 = \$v0	\$18 = \$s2
\$3 = \$v1	\$19 = \$s3
\$4 = \$a0	\$20 = \$s4
\$5 = \$a1	\$21 = \$s5
\$6 = \$a2	\$22 = \$s6
\$7 = \$a3	\$23 = \$s7
\$8 = \$t0	\$24 = \$t8
\$9 = \$t1	\$25 = \$t9
\$10 = \$t2	\$26 = \$k0
\$11 = \$t3	\$27 = \$k1
\$12 = \$t4	\$28 = \$gp
\$13 = \$t5	\$29 = \$sp
\$14 = \$t6	\$30 = \$fp
\$15 = \$t7	\$31 = \$ra
	

MIPS Register Conventions

- Assembler can refer to registers by name or by number
 - ♦ It is easier for you to remember registers by name
 - ♦ Assembler converts register name to its corresponding number


Name	Register	Usage	
\$zero	\$0	Always 0	(forced by hardware)
\$at	\$1	Reserved for asser	nbler use
\$v0 - \$v1	\$2 - \$3	Result values of a f	unction
\$a0 - \$a3	\$4 - \$7	Arguments of a fun	ction
\$t0 - \$t7	\$8 - \$15	Temporary Values	
\$s0 - \$s7	\$16 - \$23	Saved registers	(preserved across call)
\$t8 - \$t9	\$24 - \$25	More temporaries	
\$k0 - \$k1	\$26 - \$27	Reserved for OS ke	ernel
\$gp	\$28	Global pointer	(points to global data)
\$sp	\$29	Stack pointer	(points to top of stack)
\$fp	\$30	Frame pointer	(points to stack frame)
\$ra	\$31	Return address	(used by jal for function call)

Instruction Formats

- ❖ All instructions are 32-bit wide. Three instruction formats:
- Register (R-Type)
 - → Register-to-register instructions
 - ♦ Op: operation code specifies the format of the instruction

Op ⁶ Rs ⁵ Rt ⁵ Rd ⁵ sa ⁵ funct ⁶
--

- Immediate (I-Type)
 - ♦ 16-bit immediate constant is part in the instruction

- Jump (J-Type)
 - ♦ Used by jump instructions

Instruction Categories

Integer Arithmetic

♦ Arithmetic, logical, and shift instructions

Data Transfer

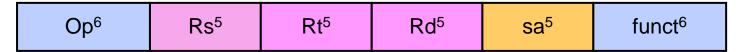
- ♦ Load and store instructions that access memory
- ♦ Data movement and conversions

Jump and Branch

→ Flow-control instructions that alter the sequential sequence

Floating Point Arithmetic

♦ Instructions that operate on floating-point registers


Miscellaneous

- ♦ Instructions that transfer control to/from exception handlers
- ♦ Memory management instructions

Next...

- Instruction Set Architecture
- Overview of the MIPS Processor
- * R-Type Arithmetic, Logical, and Shift Instructions
- I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

R-Type Format

- Op: operation code (opcode)
 - ♦ Specifies the operation of the instruction
 - ♦ Also specifies the format of the instruction
- funct: function code extends the opcode
 - \Rightarrow Up to $2^6 = 64$ functions can be defined for the same opcode
 - ♦ MIPS uses opcode 0 to define R-type instructions
- Three Register Operands (common to many instructions)
 - ♦ Rs, Rt: first and second source operands
 - Rd: destination operand
 - ♦ sa: the shift amount used by shift instructions

Integer Add / Subtract Instructions

Insti	ruction	Meaning	R-Type Format		t			
add	\$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x20
addu	\$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x21
sub	\$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x22
subu	\$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x23

- add & sub: overflow causes an arithmetic exception
 - ♦ In case of overflow, result is not written to destination register
- addu & subu: same operation as add & sub
 - → However, no arithmetic exception can occur
 - ♦ Overflow is ignored
- Many programming languages ignore overflow
 - ♦ The + operator is translated into addu
 - ♦ The operator is translated into subu

Addition/Subtraction Example

- Compiler allocates registers to variables
 - \diamond Assume that f, g, h, i, and j are allocated registers \$s0 thru \$s4
 - \Rightarrow Called the **saved** registers: \$s0 = \$16, \$s1 = \$17, ..., \$s7 = \$23
- \star Translation of: f = (g+h) (i+j)

```
addu $t0, $s1, $s2  # $t0 = g + h
addu $t1, $s3, $s4  # $t1 = i + j
subu $s0, $t0, $t1  # f = (g+h)-(i+j)
```

- Translate: addu \$t0,\$s1,\$s2 to binary code
- Solution:

```
        op
        rs = $s1
        rt = $s2
        rd = $t0
        sa
        func

        000000
        10001
        10010
        01000
        00000
        100001
```

Logical Bitwise Operations

Logical bitwise operations: and, or, xor, nor

X	У	x and y
0	0	0
0	1	0
1	0	0
1	1	1

X	У	x or y
0	0	0
0	1	1
1	0	1
1	1	1

X	У	x xor y
0	0	0
0	1	1
1	0	1
1	1	0

X	У	x nor y
0	0	1
0	1	0
1	0	0
1	1	0

- \Rightarrow AND instruction is used to clear bits: x and 0 = 0
- ❖ OR instruction is used to set bits: x or 1 = 1
- * XOR instruction is used to toggle bits: $x \times 1 = x$
- ❖ NOR instruction can be used as a NOT, how?

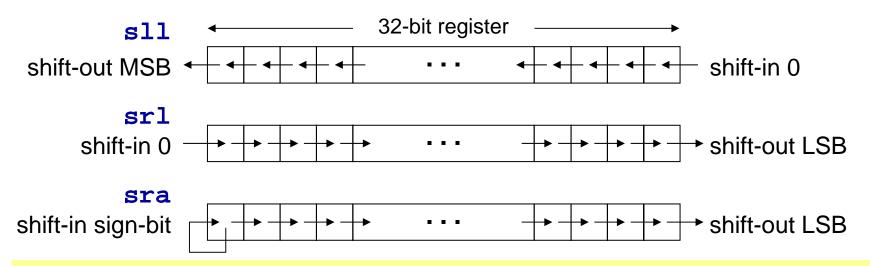
Logical Bitwise Instructions

Ins	truction	Meaning			R-Type	Format		
and	\$s1, \$s2, \$s3	\$s1 = \$s2 & \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x24
or	\$s1, \$s2, \$s3	\$s1 = \$s2 \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x25
xor	\$s1, \$s2, \$s3	\$s1 = \$s2 ^ \$s3	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x26
nor	\$s1, \$s2, \$s3	\$s1 = ~(\$s2 \$s3)	op = 0	rs = \$s2	rt = \$s3	rd = \$s1	sa = 0	f = 0x27

Examples:

```
Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000
```

```
and $s0,$s1,$s2  # $s0 = 0xabcd00000


or $s0,$s1,$s2  # $s0 = 0xffff1234

xor $s0,$s1,$s2  # $s0 = 0x54321234

nor $s0,$s1,$s2  # $s0 = 0x0000edcb
```

Shift Operations

- Shifting is to move all the bits in a register left or right
- ❖ Shifts by a constant amount: sll, srl, sra
 - ♦ sll/srl mean shift left/right logical by a constant amount
 - ♦ The 5-bit shift amount field is used by these instructions
 - ♦ sra means shift right arithmetic by a constant amount
 - ♦ The sign-bit (rather than 0) is shifted from the left.

Shift Instructions

Inst	ruction	Meaning			R-Type	Forma	t	
sll	\$s1,\$s2,10	\$s1 = \$s2 << 10	op = 0	rs = 0	rt = \$s2	rd = \$s1	sa = 10	f = 0
srl	\$s1,\$s2,10	\$s1 = \$s2>>>10	op = 0	rs = 0	rt = \$s2	rd = \$s1	sa = 10	f = 2
sra	\$s1, \$s2, 10	\$s1 = \$s2 >> 10	op = 0	rs = 0	rt = \$s2	rd = \$s1	sa = 10	f = 3
sllv	\$s1,\$s2,\$s3	\$s1 = \$s2 << \$s3	op = 0	rs = \$s3	rt = \$s2	rd = \$s1	sa = 0	f = 4
srlv	\$s1,\$s2,\$s3	\$s1 = \$s2>>>\$s3	op = 0	rs = \$s3	rt = \$s2	rd = \$s1	sa = 0	f = 6
srav	\$s1,\$s2,\$s3	\$s1 = \$s2 >> \$s3	op = 0	rs = \$s3	rt = \$s2	rd = \$s1	sa = 0	f = 7

- Shifts by a variable amount: sllv, srlv, srav
 - ♦ Same as sll, srl, sra, but a register is used for shift amount
- \Leftrightarrow Examples: assume that \$s2 = 0\$ xabcd1234, \$s3 = 16

$$srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 $s1 = 0x0000abcd$$

Binary Multiplication

- ❖ Shift-left (s11) instruction can perform multiplication
 - ♦ When the multiplier is a power of 2
- You can factor any binary number into powers of 2
 - - Factor 36 into (4 + 32) and use distributive property of multiplication

$$\Leftrightarrow$$
 \$s2 = \$s1*36 = \$s1*(4 + 32) = \$s1*4 + \$s1*32

```
      sll
      $t0,
      $s1,
      2
      ;
      $t0 = $s1 * 4

      sll
      $t1,
      $s1,
      5
      ;
      $t1 = $s1 * 32

      addu
      $s2,
      $t0,
      $t1 ;
      $s2 = $s1 * 36
```

Your Turn . . .

Multiply \$s1 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

```
sll $t0, $s1, 1 ; $t0 = $s1 * 2

sll $t1, $s1, 3 ; $t1 = $s1 * 8

addu $s2, $t0, $t1 ; $s2 = $s1 * 10

sll $t0, $s1, 4 ; $t0 = $s1 * 16

addu $s2, $s2, $t0 ; $s2 = $s1 * 26
```

Multiply \$s1 by 31, Hint: 31 = 32 - 1

```
sll $s2, $s1, 5 ; $s2 = $s1 * 32
subu $s2, $s2, $s1 ; $s2 = $s1 * 31
```

Next ...

- Instruction Set Architecture
- Overview of the MIPS Processor
- * R-Type Arithmetic, Logical, and Shift Instructions
- ❖ I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

I-Type Format

- Constants are used quite frequently in programs
 - ♦ The R-type shift instructions have a 5-bit shift amount constant
 - What about other instructions that need a constant?
- ❖ I-Type: Instructions with Immediate Operands

Op ⁶	Rs ⁵	Rt⁵	immediate ¹⁶
-----------------	-----------------	-----	-------------------------

- 16-bit immediate constant is stored inside the instruction
 - ♦ Rs is the source register number
 - ♦ Rt is now the destination register number (for R-type it was Rd)
- Examples of I-Type ALU Instructions:
 - ♦ Add immediate: addi \$s1, \$s2, 5 # \$s1 = \$s2 + 5
 - \diamondsuit OR immediate: ori \$s1, \$s2, 5 # \$s1 = \$s2 | 5

I-Type ALU Instructions

Instruction		Meaning	I-Type Format			
addi	\$s1, \$s2, 10	\$s1 = \$s2 + 10	op = 0x8	rs = \$s2	rt = \$s1	$imm^{16} = 10$
addiu	\$s1, \$s2, 10	\$s1 = \$s2 + 10	op = 0x9	rs = \$s2	rt = \$s1	$imm^{16} = 10$
andi	\$s1, \$s2, 10	\$s1 = \$s2 & 10	op = 0xc	rs = \$s2	rt = \$s1	$imm^{16} = 10$
ori	\$s1, \$s2, 10	\$s1 = \$s2 10	op = 0xd	rs = \$s2	rt = \$s1	$imm^{16} = 10$
xori	\$s1, \$s2, 10	\$s1 = \$s2 ^ 10	op = 0xe	rs = \$s2	rt = \$s1	$imm^{16} = 10$
lui	\$s1, 10	\$s1 = 10 << 16	op = 0xf	0	rt = \$s1	$imm^{16} = 10$

- * addi: overflow causes an arithmetic exception
 - ♦ In case of overflow, result is not written to destination register
- addiu: same operation as addi but overflow is ignored
- Immediate constant for addi and addiu is signed
 - ♦ No need for subi or subiu instructions
- Immediate constant for andi, ori, xori is unsigned

Examples: I-Type ALU Instructions

* Examples: assume A, B, C are allocated \$s0, \$s1, \$s2

```
A = B&0xf; translated as andi $s0,$s1,0xf

C = B|0xf; translated as ori $s2,$s1,0xf

C = 5; translated as ori $s2,$zero,5

A = B; translated as ori $s0,$s1,0
```

- No need for subi, because addi has signed immediate
- * Register 0 (\$zero) has always the value 0

32-bit Constants

❖ I-Type instructions can have only 16-bit constants

Op ⁶	Rs ⁵	Rt ⁵	immediate ¹⁶
-----------------	-----------------	-----------------	-------------------------

- What if we want to load a 32-bit constant into a register?
- ❖ Can't have a 32-bit constant in I-Type instructions ⊗
 - ♦ We have already fixed the sizes of all instructions to 32 bits
- ❖ Solution: use two instructions instead of one ☺
 - ♦ Suppose we want: \$s1=0xAC5165D9 (32-bit constant)

Next ...

- Instruction Set Architecture
- Overview of the MIPS Processor
- R-Type Arithmetic, Logical, and Shift Instructions
- I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

J-Type Format

Op⁶ immediate²⁶

❖ J-type format is used for unconditional jump instruction:

```
j label # jump to label
```

• •

label:

- 26-bit immediate value is stored in the instruction
 - ♦ Immediate constant specifies address of target instruction
- Program Counter (PC) is modified as follows:

```
♦ Next PC = PC<sup>4</sup> immediate<sup>26</sup> 00 least-significant 2 bits are 00
```

♦ Upper 4 most significant bits of PC are unchanged

Conditional Branch Instructions

MIPS compare and branch instructions:

```
beq Rs,Rt,label branch to label if (Rs == Rt)
```

MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

	bltz	Rs, label	branch to label if	Rs	<	0)
--	------	-----------	--------------------	----	---	---	---

bgtz Rs, label branch to label if
$$(Rs > 0)$$

❖ No need for beqz and bnez instructions. Why?

Set on Less Than Instructions

MIPS also provides set on less than instructions

```
slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0
sltu rd,rs,rt unsigned <
slti rt,rs,im<sup>16</sup> if (rs < im<sup>16</sup>) rt = 1 else rt = 0
sltiu rt,rs,im<sup>16</sup> unsigned <</pre>
```

Signed / Unsigned Comparisons

Can produce different results

```
Assume \$s0 = 1 and \$s1 = -1 = 0xfffffffffslt \$t0, \$s0, \$s1 results in \$t0 = 0stlu \$t0, \$s0, \$s1 results in \$t0 = 1
```

More on Branch Instructions

❖ MIPS hardware does NOT provide instructions for ...

```
blt, bltu branch if less than (signed/unsigned)
ble, bleu branch if less or equal (signed/unsigned)
bgt, bgtu branch if greater than (signed/unsigned)
bge, bgeu branch if greater or equal (signed/unsigned)
```

Can be achieved with a sequence of 2 instructions

- ❖ How to implement:
- Solution:

```
ble $s2,$s3,label

slt $at,$s3,$s2

beq $at,$zero,label
```

Pseudo-Instructions

- Introduced by assembler as if they were real instructions
 - → To facilitate assembly language programming

Pseudo-Instructions			Conversion to Real Instructions				
move	\$s1,	\$s2	addu	\$s1, \$zero, \$s2			
not	\$s1,	\$s2	nor	\$s1, \$s2, \$zero			
li	\$s1,	0xabcd	ori	\$s1, \$zero, 0xabcd			
li	\$s1,	0xabcd1234	lui	\$at, 0xabcd			
			ori	\$s1, \$at, 0x1234			
sgt	\$s1,	\$s2, \$s3	slt	\$s1, \$s3, \$s2			
blt	\$s1,	\$s2, label	slt	\$at, \$s1, \$s2			
			bne	<pre>\$at, \$zero, label</pre>			

- ❖ Assembler reserves \$at = \$1 for its own use
 - \$at is called the assembler temporary register

Jump, Branch, and SLT Instructions

Instruction		Meaning	Format				
j	label	jump to label	$op^6 = 2$		imm ²⁶		
beq	rs, rt, label	branch if (rs == rt)	$op^6 = 4$	rs ⁵	rt ⁵	imm ¹⁶	
bne	rs, rt, label	branch if (rs != rt)	$op^6 = 5$	rs ⁵	rt ⁵	imm ¹⁶	
blez	rs, label	branch if (rs<=0)	$op^6 = 6$	rs ⁵	0	imm ¹⁶	
bgtz	rs, label	branch if (rs > 0)	$op^6 = 7$	rs ⁵	0	imm ¹⁶	
bltz	rs, label	branch if (rs < 0)	$op^6 = 1$	rs ⁵	0	imm ¹⁶	
bgez	rs, label	branch if (rs>=0)	$op^6 = 1$	rs ⁵	1	imm ¹⁶	

Instruction		Meaning	Format					
slt	rd, rs, rt	rd=(rs <rt?1:0)< td=""><td>$op^6 = 0$</td><td>rs⁵</td><td>rt⁵</td><td colspan="2">rd⁵ 0 0x2a</td><td>0x2a</td></rt?1:0)<>	$op^6 = 0$	rs ⁵	rt ⁵	rd ⁵ 0 0x2a		0x2a
sltu	rd, rs, rt	rd=(rs <rt?1:0)< td=""><td>$op^6 = 0$</td><td>rs⁵</td><td>rt⁵</td><td colspan="2">rd⁵ 0 0x2b</td><td>0x2b</td></rt?1:0)<>	$op^6 = 0$	rs ⁵	rt ⁵	rd ⁵ 0 0x2b		0x2b
slti	rt, rs, imm ¹⁶	rt=(rs <imm?1:0)< td=""><td>0xa</td><td>rs⁵</td><td>rt⁵</td><td colspan="2">imm¹⁶</td><td>16</td></imm?1:0)<>	0xa	rs ⁵	rt ⁵	imm ¹⁶		16
sltiu	rt, rs, imm ¹⁶	rt=(rs <imm?1:0)< td=""><td>0xb</td><td>rs⁵</td><td>rt⁵</td><td colspan="2">imm¹⁶</td><td>16</td></imm?1:0)<>	0xb	rs ⁵	rt ⁵	imm ¹⁶		16

Next ...

- Instruction Set Architecture
- Overview of the MIPS Processor
- * R-Type Arithmetic, Logical, and Shift Instructions
- I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

Translating an IF Statement

Consider the following IF statement:

```
if (a == b) c = d + e; else c = d - e;
Assume that a, b, c, d, e are in $s0, ..., $s4 respectively
```

How to translate the above IF statement?

```
bne $s0, $s1, else
addu $s2, $s3, $s4

j exit
else: subu $s2, $s3, $s4

exit: . . .
```

Compound Expression with AND

- Programming languages use short-circuit evaluation
- ❖ If first expression is false, second expression is skipped

```
if (($s1 > 0) && ($s2 < 0)) {$s3++;}
```

```
# One Possible Implementation ...
  bgtz $s1, L1  # first expression
  j   next  # skip if false
L1: bltz $s2, L2  # second expression
  j   next  # skip if false
L2: addiu $s3,$s3,1  # both are true
next:
```

Better Implementation for AND

```
if (($s1 > 0) && ($s2 < 0)) {$s3++;}
```

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

```
# Better Implementation ...
blez $s1, next # skip if false
bgez $s2, next # skip if false
addiu $s3,$s3,1 # both are true
next:
```

Compound Expression with OR

- Short-circuit evaluation for logical OR
- ❖ If first expression is true, second expression is skipped

```
if ((\$s1 > \$s2) | | (\$s2 > \$s3)) {\$s4 = 1;}
```

Use fall-through to keep the code as short as possible

```
bgt $s1, $s2, L1  # yes, execute if part
ble $s2, $s3, next # no: skip if part
L1: li $s4, 1  # set $s4 to 1
next:
```

- bgt, ble, and li are pseudo-instructions
 - → Translated by the assembler to real instructions

Your Turn . . .

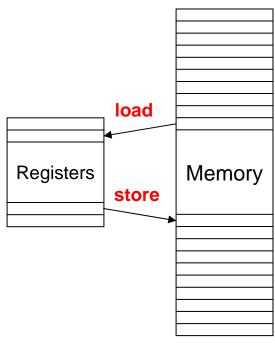
- Translate the IF statement to assembly language
- \$\$1 and \$\$2 values are unsigned

```
if( $s1 <= $s2 ) {
   $s3 = $s4
}</pre>
```

```
bgtu $s1, $s2, next move $s3, $s4 next:
```

\$\$3, \$\$4, and \$\$5 values are signed

```
if (($s3 <= $s4) &&
($s4 > $s5)) {
$s3 = $s4 + $s5
}
```


```
bgt $s3, $s4, next
ble $s4, $s5, next
addu $s3, $s4, $s5
next:
```

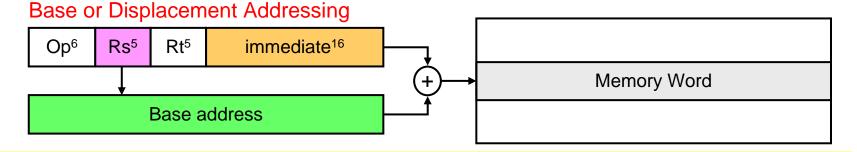
Next...

- Instruction Set Architecture
- Overview of the MIPS Processor
- * R-Type Arithmetic, Logical, and Shift Instructions
- I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

Load and Store Instructions

- Instructions that transfer data between memory & registers
- Programs include variables such as arrays and objects
- Such variables are stored in memory
- Load Instruction:
 - → Transfers data from memory to a register
- Store Instruction:
 - ♦ Transfers data from a register to memory
- Memory address must be specified by load and store

Load and Store Word

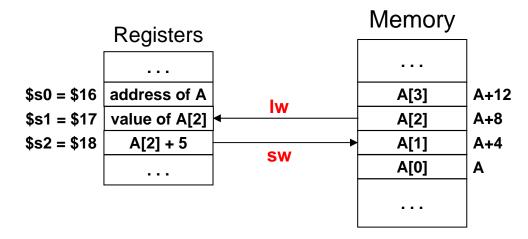

Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt,
$$imm^{16}(Rs)$$
 # Rt = MEMORY[Rs+ imm^{16}]

Store Word Instruction

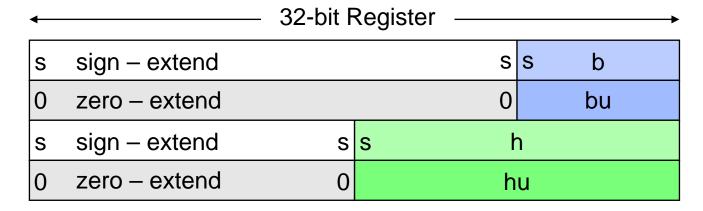
sw Rt,
$$imm^{16}(Rs)$$
 # MEMORY[Rs+ imm^{16}] = Rt

- Base or Displacement addressing is used
 - ♦ Memory Address = Rs (base) + Immediate¹⁶ (displacement)
 - ♦ Immediate¹⁶ is sign-extended to have a signed displacement



Example on Load & Store

- A[1] = A[2] + 5 (A is an array of words)
 - ♦ Assume that address of array A is stored in register \$s0


```
lw $\$s1, 8(\$s0)  # $\$s1 = A[2]
addiu $\$s2, $\$s1, 5  # $\$s2 = A[2] + 5
sw $\$s2, 4(\$s0)  # A[1] = $\$s2
```

❖ Index of A[2] and A[1] should be multiplied by 4. Why?

Load and Store Byte and Halfword

- The MIPS processor supports the following data formats:
 - ♦ Byte = 8 bits, Halfword = 16 bits, Word = 32 bits
- Load & store instructions for bytes and halfwords
 - ♦ Ib = load byte, Ibu = load byte unsigned, sb = store byte
 - ♦ Ih = load half, Ihu = load half unsigned, sh = store halfword
- Load expands a memory data to fit into a 32-bit register
- Store reduces a 32-bit register to fit in memory

Load and Store Instructions

Instruction		Meaning	I-Type Format			
lb	rt, imm ¹⁶ (rs)	$rt = MEM[rs+imm^{16}]$	0x20	rs ⁵	rt ⁵	imm ¹⁶
lh	rt, imm ¹⁶ (rs)	$rt = MEM[rs+imm^{16}]$	0x21	rs ⁵	rt ⁵	imm ¹⁶
lw	rt, imm ¹⁶ (rs)	$rt = MEM[rs+imm^{16}]$	0x23	rs ⁵	rt ⁵	imm ¹⁶
lbu	rt, imm ¹⁶ (rs)	$rt = MEM[rs+imm^{16}]$	0x24	rs ⁵	rt ⁵	imm ¹⁶
lhu	rt, imm ¹⁶ (rs)	$rt = MEM[rs+imm^{16}]$	0x25	rs ⁵	rt ⁵	imm ¹⁶
sb	rt, imm ¹⁶ (rs)	$MEM[rs+imm^{16}] = rt$	0x28	rs ⁵	rt ⁵	imm ¹⁶
sh	rt, imm ¹⁶ (rs)	$MEM[rs+imm^{16}] = rt$	0x29	rs ⁵	rt ⁵	imm ¹⁶
SW	rt, imm ¹⁶ (rs)	$MEM[rs+imm^{16}] = rt$	0x2b	rs ⁵	rt ⁵	imm ¹⁶

Base or Displacement Addressing is used

- ♦ Memory Address = Rs (base) + Immediate¹⁶ (displacement)
- Two variations on base addressing
 - ♦ If Rs = \$zero = 0 then Address = Immediate¹⁶ (absolute)
 - ♦ If Immediate¹⁶ = 0 then Address = Rs (register indirect)

Next...

- Instruction Set Architecture
- Overview of the MIPS Processor
- * R-Type Arithmetic, Logical, and Shift Instructions
- I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

Translating a WHILE Loop

Consider the following WHILE statement:

Memory

...
A[i]
A+4×i
...
A[2]
A+8
A[1]
A[0]
A

How to translate above WHILE statement?

```
$s1, $s1, $s1
                          \# i = 0
     xor
           $t0, $s0
                          # $t0 = address A
     move
loop: lw $t1, 0($t0)
                          # $t1 = A[i]
     beq $t1, $s2, exit # exit if (A[i]== k)
     addiu $s1, $s1, 1
                          \# i = i+1
                          # $t0 = 4*i
     sll
           $t0, $s1, 2
     addu
           $t0, $s0, $t0
                          # $t0 = address A[i]
           loop
exit: . . .
```

Using Pointers to Traverse Arrays

Consider the same WHILE loop:

```
i = 0; while (A[i] != k) i = i+1;
```

Where address of A, i, k are in \$s0, \$s1, \$s2, respectively

We can use a pointer to traverse array A

Pointer is incremented by 4 (faster than indexing)

Only 4 instructions (rather than 6) in loop body

Copying a String

The following code copies source string to target string Address of source in \$s0 and address of target in \$s1 Strings are terminated with a null character (C strings)

```
i = 0;
do {target[i]=source[i]; i++;} while (source[i]!=0);
```

```
move $t0, $s0  # $t0 = pointer to source
move $t1, $s1  # $t1 = pointer to target

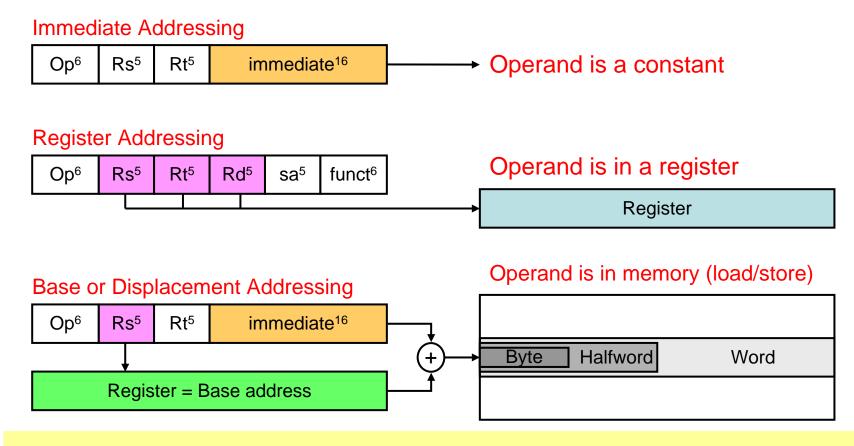
L1: lb $t2, 0($t0)  # load byte into $t2
sb $t2, 0($t1)  # store byte into target
addiu $t0, $t0, 1  # increment source pointer
addiu $t1, $t1, 1  # increment target pointer
bne $t2, $zero, L1  # loop until NULL char
```

Summing an Integer Array

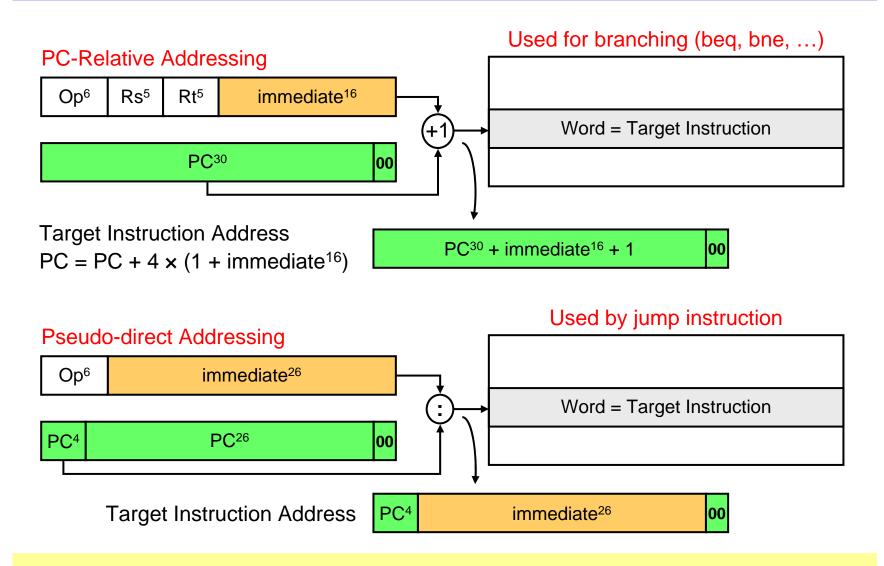
```
sum = 0;
for (i=0; i<n; i++) sum = sum + A[i];</pre>
```

Assume \$s0 = array address, \$s1 = array length = n

```
move $t0, $s0  # $t0 = address A[i]
xor $t1, $t1, $t1  # $t1 = i = 0
xor $s2, $s2, $s2  # $s2 = sum = 0


L1: lw $t2, 0($t0)  # $t2 = A[i]
addu $s2, $s2, $t2  # sum = sum + A[i]
addiu $t0, $t0, 4  # point to next A[i]
addiu $t1, $t1, 1  # i++
bne $t1, $s1, L1  # loop if (i != n)
```

Next ...


- Instruction Set Architecture
- Overview of the MIPS Processor
- * R-Type Arithmetic, Logical, and Shift Instructions
- ❖ I-Type Format and Immediate Constants
- Jump and Branch Instructions
- Translating If Statements and Boolean Expressions
- Load and Store Instructions
- Translating Loops and Traversing Arrays
- Addressing Modes

Addressing Modes

- Where are the operands?
- How memory addresses are computed?

Branch / Jump Addressing Modes

Jump and Branch Limits

- ❖ Jump Address Boundary = 2²⁶ instructions = 256 MB
 - → Text segment cannot exceed 2²⁶ instructions or 256 MB
 - ♦ Upper 4 bits of PC are unchanged

Target Instruction Address

- Branch Address Boundary
 - ♦ Branch instructions use I-Type format (16-bit immediate constant)
 - ♦ PC-relative addressing:

- Target instruction address = PC + 4x(1 + immediate¹⁶)
- During assembly: immediate=(Target address PC)/4, where PC contains address of next instruction

Jump and Branch Limits

- During execution, PC contains the address of current instruction (thus we add 1 to immediate¹⁶).
- Maximum branch limit is -2¹⁵ to +2¹⁵-1 instructions.
- If immediate is positive => Forward Jump
- If immediate is negative => Backward Jump

Example

0

Again:4

8 beq \$s1,\$s2,Next

12

16 bne \$s1,\$zero,Again

Next: 20

Forward Jump

During assembly:

Immediate=(Next-PC)/4=(20-12)/4=2

During execution:

PC=PC+4*(immediate+1)=8+4*(3)=20

Backward Jump

During assembly:

Immediate=(Again-PC)/4=(4-20)/4=-4

During execution:

PC=PC+4*(immediate+1)=16+4*(-3)=4

Summary of RISC Design

- ❖ All instructions are typically of one size
- Few instruction formats
- All operations on data are register to register
 - ♦ Operands are read from registers
 - → Result is stored in a register
- General purpose integer and floating point registers
 - → Typically, 32 integer and 32 floating-point registers
- Memory access only via load and store instructions
 - ♦ Load and store: bytes, half words, words, and double words
- Few simple addressing modes

Four Design Principles

1. Simplicity favors regularity

- → Fix the size of instructions (simplifies fetching & decoding)
- → Fix the number of operands per instruction
 - Three operands is the natural number for a typical instruction

2. Smaller is faster

3. Make the common case fast

- ♦ Include constants inside instructions (faster than loading them)
- ♦ Design most instructions to be register-to-register

4. Good design demands good compromises

→ Fixed-size instructions compromise the size of constants