Data Representation

ICS 233

Computer Architecture and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Outline

- Positional Number Systems
- Binary and Hexadecimal Numbers
- Base Conversions
- Integer Storage Sizes
- Binary and Hexadecimal Addition
- Signed Integers and 2's Complement Notation
- Sign Extension
- Binary and Hexadecimal subtraction
- Carry and Overflow
- Character Storage

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)

27 Radix-10 or decimal number (positional)

11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with *k* digits

Number *N* in radix
$$r = (d_{k-1}d_{k-2} ... d_1d_0)_r$$

Value =
$$d_{k-1} \times r^{k-1} + d_{k-2} \times r^{k-2} + ... + d_1 \times r + d_0$$

Examples:
$$(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$$

$$(2103)_4 = 2 \times 4^3 + 1 \times 4^2 + 0 \times 4 + 3 = 147$$

Binary Numbers

- ❖ Each binary digit (called bit) is either 1 or 0
- ❖ Bits have no inherent meaning, can represent
 - ♦ Unsigned and signed integers
 - ♦ Characters
 - ♦ Floating-point numbers
 - ♦ Images, sound, etc.

Most Significant Bit Significant Bit Significant Bit 27 6 5 4 3 2 1 0 1 0 1 1 1 0 1 27 26 25 24 23 22 21 20

Bit Numbering

- ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Converting Binary to Decimal

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2
- **!** Decimal Value = $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- **A** Binary $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

7	6	5	4	3	2	1	0
1	0	0	1	1	1	0	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20

 \Rightarrow

Some common powers of 2

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	28	256
21	2	29	512
2^{2}	4	2 ¹⁰	1024
2^{3}	8	2 ¹¹	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	215	32768

Convert Unsigned Decimal to Binary

- Repeatedly divide the decimal integer by 2
- Each remainder is a binary digit in the translated value

	Remainder	Quotient	Division
least significant bit	1 ←	18	37 / 2
	0	9	18 / 2
$37 = (100101)_2$	1	4	9/2
	0	2	4/2
	0	1	2/2
most significant bit	1 ←	0	1/2
top when quotient is zero	st		

Hexadecimal Integers

- ❖ 16 Hexadecimal Digits: 0 9, A F
- More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Converting Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits
- Example:

Convert the 32-bit binary number to hexadecimal 1110 1011 0001 0110 1010 0111 1001 0100

❖ Solution:

E	В 1		6	A	7	9	4	
1110	1011	0001	0110	1010	0111	1001	0100	

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16

Value =
$$(d_{n-1} \times 16^{n-1}) + (d_{n-2} \times 16^{n-2}) + ... + (d_1 \times 16) + d_0$$

Examples:

$$(1234)_{16} = (1 \times 16^3) + (2 \times 16^2) + (3 \times 16) + 4 =$$

Decimal Value 4660

$$(3BA4)_{16} = (3 \times 16^3) + (11 \times 16^2) + (10 \times 16) + 4 =$$

Decimal Value 15268

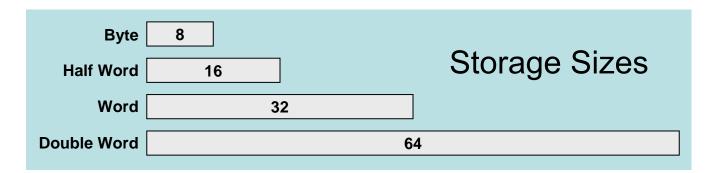
Converting Decimal to Hexadecimal

- Repeatedly divide the decimal integer by 16
- ❖ Each remainder is a hex digit in the translated value

Division	Quotient	Remainder	
422 / 16	26	6 ←	least significant digit
26 / 16	1	A	
1 / 16	0	1 -	most significant digit
		stop who	

Decimal 422 = 1A6 hexadecimal

Integer Storage Sizes



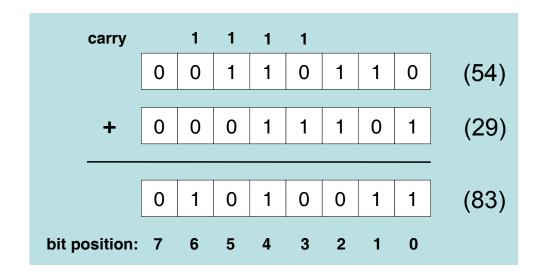
Storage Type	Unsigned Range	Powers of 2
Byte	0 to 255	0 to (2 ⁸ – 1)
Half Word	0 to 65,535	0 to (2 ¹⁶ – 1)
Word	0 to 4,294,967,295	0 to (2 ³² – 1)
Double Word	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)

What is the largest 20-bit unsigned integer?

Answer: $2^{20} - 1 = 1,048,575$

Binary Addition

- Start with the least significant bit (rightmost bit)
- Add each pair of bits
- Include the carry in the addition, if present



Hexadecimal Addition

- Start with the least significant hexadecimal digits
- ❖ Let Sum = summation of two hex digits
- ❖ If Sum is greater than or equal to 16

Example:

carry: 1 1 1 1
$$A + B = 10 + 11 = 21$$
A F C D 1 0 B 5 A A B Carry = 1

Signed Integers

- Several ways to represent a signed number
 - ♦ Sign-Magnitude
 - ♦ Biased
 - ♦ 1's complement
- Divide the range of values into 2 equal parts

 - ♦ Second part correspond to the negative numbers (< 0)</p>
- Focus will be on the 2's complement representation
 - ♦ Has many advantages over other representations
 - ♦ Used widely in processors to represent signed integers

Two's Complement Representation

Positive numbers

Negative numbers

⇒ Signed value = Unsigned value – 2ⁿ
 n = number of bits

Negative weight for MSB

♦ Another way to obtain the signed value is to assign a negative weight to most-significant bit

	1	0	1	1	0	1	0	0	
	-128	64	32	16	8	4	2	1	
= -	128	+ 3	32 -	+ 1	6+	- 4	= -	76	

8-bit Binary	Unsigned	Signed		
value	value	value		
00000000	0	0		
0000001	1	+1		
00000010	2	+2		
01111110	126	+126		
01111111	127	+127		
10000000	128	-128		
10000001	129	-127		
11111110	254	-2		
11111111	255	-1		

Forming the Two's Complement

starting value	00100100 = +36
step1: reverse the bits (1's complement)	11011011
step 2: add 1 to the value from step 1	+ 1
sum = 2's complement representation	11011100 = -36

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry

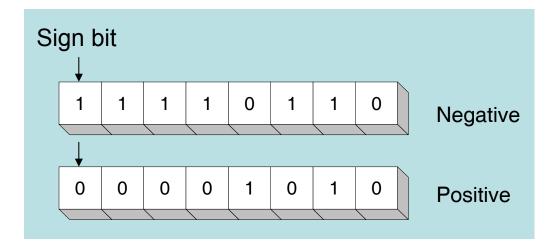
Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left

```
Binary Value
= 00100100 significant 1
2's Complement
= 11011100
```

Sign Bit

- Highest bit indicates the sign
- ❖ 1 = negative
- \bullet 0 = positive



For Hexadecimal Numbers, check most significant digit

If highest digit is > 7, then value is negative

Examples: 8A and C5 are negative bytes

B1C42A00 is a negative word (32-bit signed integer)

Sign Extension

- Step 1: Move the number into the lower-significant bits
- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure that both magnitude and sign are correct
- Examples

 - ♦ Sign-Extend 01100010 to 16 bits

```
01100010 = +98
```

```
00000000001100010 = +98
```

- Infinite 0s can be added to the left of a positive number
- Infinite 1s can be added to the left of a negative number

Two's Complement of a Hexadecimal

- To form the two's complement of a hexadecimal
 - ♦ Subtract each hexadecimal digit from 15
 - ♦ Add 1

Examples:

```
2's complement of 6A3D = 95C2 + 1 = 95C3

2's complement of 92F15AC0 = 6D0EA53F + 1 = 6D0EA540

2's complement of FFFFFFFF = 00000000 + 1 = 00000001
```

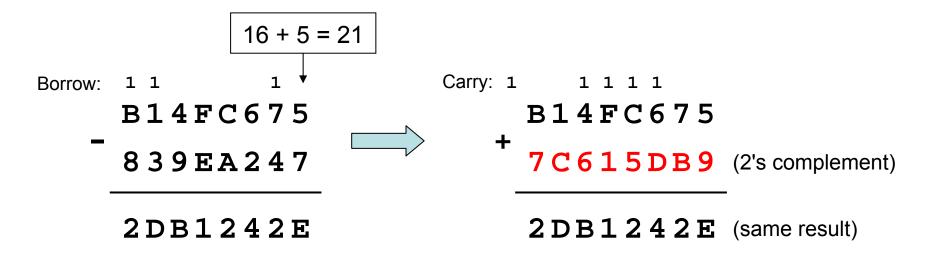
No need to convert hexadecimal to binary

Binary Subtraction

- ❖ When subtracting A B, convert B to its 2's complement
- ❖ Add A to (–B)

- Final carry is ignored, because
 - ♦ Negative number is sign-extended with 1's
 - ♦ You can imagine infinite 1's to the left of a negative number
 - ♦ Adding the carry to the extended 1's produces extended zeros

Hexadecimal Subtraction



- When a borrow is required from the digit to the left, then Add 16 (decimal) to the current digit's value
- Last Carry is ignored

Ranges of Signed Integers

For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1}-1)$

Positive range: 0 to $2^{n-1} - 1$

Negative range: -2^{n-1} to -1

Storage Type	Unsigned Range	Powers of 2
Byte	-128 to +127	-2^7 to $(2^7 - 1)$
Half Word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$
Word	-2,147,483,648 to +2,147,483,647	-2^{31} to $(2^{31} - 1)$
Double Word	-9,223,372,036,854,775,808 to	263 to (263 1)
Double Word	+9,223,372,036,854,775,807	–2 ⁶³ to (2 ⁶³ – 1)

Practice: What is the range of signed values that may be stored in 20 bits?

Carry and Overflow

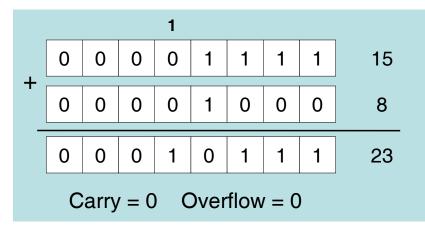
- Carry is important when ...
 - ♦ Adding or subtracting unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
- ❖ Overflow is important when ...
 - ♦ Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range

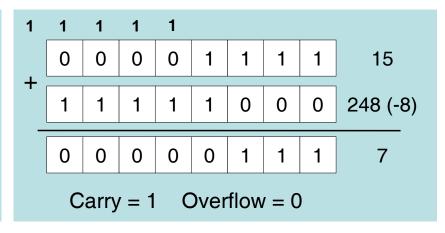
Overflow occurs when

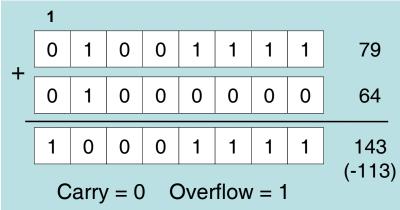
- ♦ Adding two positive numbers and the sum is negative
- ♦ Adding two negative numbers and the sum is positive
- ♦ Can happen because of the fixed number of sum bits

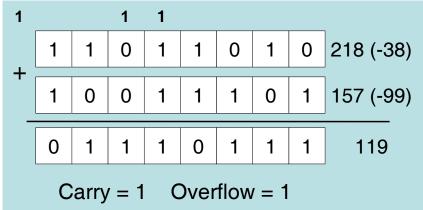
Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples are 8-bit numbers)



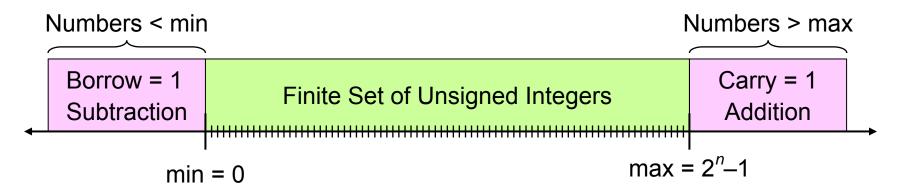




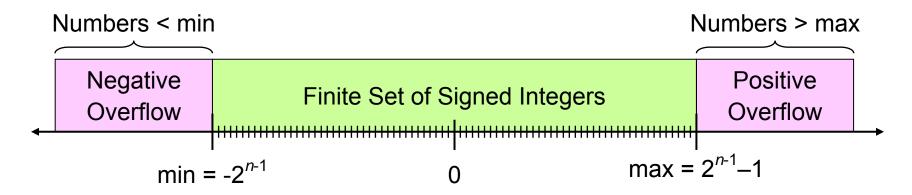


Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation



❖ Signed Integers: *n*-bit 2's complement representation



Character Storage

Character sets

- ♦ Standard ASCII: 7-bit character codes (0 127)
- \diamond Unicode: 16-bit character codes (0 65,535)
- ♦ Unicode standard represents a universal character set
 - Defines codes for characters used in all major languages
 - Used in Windows-XP: each character is encoded as 16 bits
- ♦ UTF-8: variable-length encoding used in HTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters

Null-terminated String

→ Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
2	space	!	**	#	\$	%	&	•	()	*	+	•	_	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	A	В	C	D	E	F	G	н	I	J	K	L	M	N	0
5	P	Q	R	S	Т	U	v	W	X	Y	Z	[\]	^	
6	,	a	b	С	d	е	£	g	h	i	j	k	1	m	n	0
7	р	q	r	ធ	t	u	v	w	×	Y	Z	{		}	~	DEL

Examples:

- ♦ ASCII code for space character = 20 (hex) = 32 (decimal)
- ♦ ASCII code for 'L' = 4C (hex) = 76 (decimal)
- \Rightarrow ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- The first 32 characters of ASCII table are used for control
- Control character codes = 00 to 1F (hexadecimal)
 - ♦ Not shown in previous slide
- Examples of Control Characters
 - ♦ Character 0 is the NULL character ⇒ used to terminate a string
 - ♦ Character 9 is the Horizontal Tab (HT) character
 - ♦ Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
 - ♦ Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
 - ♦ The LF and CR characters are used together
 - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
 - ♦ Character 7F (hex) is the Delete (DEL) character