
Introduction

ICS 233
Computer Architecture and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. M. Mudawar, ICS 233, KFUPM]

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 2

Outline
Welcome to ICS 233

High-Level, Assembly-, and Machine-Languages

Components of a Computer System

Chip Manufacturing Process

Technology Improvements

Programmer's View of a Computer System

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 3

Welcome to ICS 233
Instructor: Dr. Aiman H. El-Maleh

Office: Building 22, Room 318

Office Phone: 2811

Office Hours: SUMT 1:00–2:00 PM

Email:

aimane@kfupm.edu.sa

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 4

Which Textbooks will be Used?
Computer Organization & Design:
The Hardware/Software Interface

Third Edition

David Patterson and John Hennessy

Morgan Kaufmann Publishers, 2005

MIPS Assembly Language Programming
Robert Britton

Pearson Prentice Hall, 2004

Supplement for Lab

Read the textbooks in addition to slides

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 5

Course Objectives
Towards the end of this course, you should be able to …

Describe the instruction set architecture of a MIPS processor

Analyze, write, and test MIPS assembly language programs

Describe organization/operation of integer & floating-point units

Design the datapath and control of a single-cycle CPU

Design the datapath/control of a pipelined CPU & handle hazards

Describe the organization/operation of memory and caches

Analyze the performance of processors and caches

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 6

Course Learning Outcomes
Ability to analyze, write, and test MIPS assembly
language programs.

Ability to describe the organization and operation of
integer and floating-point arithmetic units.

Ability to apply knowledge of mathematics in CPU
performance analysis and in speedup computation.

Ability to design the datapath and control unit of a
processor.

Ability to use simulator tools in the analysis of assembly
language programs and in CPU design.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 7

Required Background
The student should already be able to program
confidently in at least one high-level programming
language, such as Java or C.

Prerequisite
COE 202: Fundamentals of computer engineering

ICS 201: Introduction to computing

Only students with computer science or software
engineering major should be registered in this course.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 8

Grading Policy
Discussions & Reflections 5%
Programming Assignments 10%
Quizzes 10%
Exam I 15% (Th., Nov. 13, 1:00 PM)
Exam II 15% (Th., Jan. 8, 1:00 PM)
Laboratory 15%
Project 10%
Final 20%

Attendance will be taken regularly.
Excuses for officially authorized absences must be presented no later than one
week following resumption of class attendance.
Late assignments will be accepted (upto 3 days) but you will be penalized 10%
per each late day.
A student caught cheating in any of the assignments will get 0 out of 10%.
No makeup will be made for missing Quizzes or Exams.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 9

Course Topics
Introduction
Introduction to computer architecture, assembly and machine
languages, components of a computer system, memory hierarchy,
instruction execution cycle, chip manufacturing process, technology
trends, programmer’s view of a computer system.

Review of Data Representation
Binary and hexadecimal numbers, signed integers, binary and
hexadecimal addition and subtraction, carry and overflow,
characters and ASCII table.

Instruction Set Architecture
Instruction set design, RISC design principles, MIPS instructions
and formats, registers, arithmetic instructions, bit manipulation, load
and store instructions, byte ordering, jump and conditional branch
instructions, addressing modes, pseudo instructions.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 10

Course Topics
MIPS Assembly Language Programming
Assembly language tools, program template, directives, text, data,
and stack segments, defining data, arrays, and strings, array
indexing and traversal, translating expressions, if else statements,
loops, indirect jump and jump table, console input and output.

Procedures and the Runtime Stack
Runtime stack and its applications, defining a procedure, procedure
calls and return address, nested procedure calls, passing
arguments in registers and on the stack, stack frames, value and
reference parameters, saving and restoring registers, local
variables on the stack.

Interrupts
Software exceptions, syscall instruction, hardware interrupts,
interrupt processing and handler, MIPS coprocessor 0.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 11

Course Topics
Integer Arithmetic and ALU design

Hardware adders, barrel shifter, multifunction ALU design, integer
multiplication, shift add multiplication hardware, Shift-subtract
division algorithm and hardware, MIPS integer multiply and divide
instructions, HI and LO registers.

Floating-point arithmetic

Floating-point representation, IEEE 754 standard, FP addition and
multiplication, rounding, MIPS floating-point coprocessor and
instructions.

CPU Performance

CPU performance and metrics, CPI and performance equation,
MIPS, Amdahl’s law.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 12

Course Topics
Single-Cycle Datapath and Control Design
Designing a processor, register transfer, datapath components,
register file design, clocking methodology, control signals,
implementing the control unit, estimating longest delay.

Pipelined Datapath and Control
Pipelining concepts, timing and performance, 5-stage MIPS
pipeline, pipelined datapath and control, pipeline hazards, data
hazards and forwarding, control hazards, branch prediction.

Memory System Design
Memory hierarchy, SRAM, DRAM, pipelined and interleaved
memory, cache memory and locality of reference, cache memory
organization, write policy, write buffer, cache replacement, cache
performance, two-level cache memory.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 13

Software Tools
MIPS Simulators

MARS: MIPS Assembly and Runtime Simulator

Runs MIPS-32 assembly language programs

Website: http://courses.missouristate.edu/KenVollmar/MARS/

PCSPIM

Also Runs MIPS-32 assembly language programs

Website: http://www.cs.wisc.edu/~larus/spim.html

CPU Design and Simulation Tool
Logisim

Educational tool for designing and simulating CPUs

Website: http://ozark.hendrix.edu/~burch/logisim/

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 14

What is “Computer Architecture” ?
Computer Architecture =

Instruction Set Architecture +
Computer Organization

Instruction Set Architecture (ISA)

WHAT the computer does (logical view)

Computer Organization

HOW the ISA is implemented (physical view)

We will study both in this course

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 15

Next . . .
Welcome to ICS 233

High-Level, Assembly-, and Machine-Languages

Components of a Computer System

Chip Manufacturing Process

Technology Improvements

Programmer's View of a Computer System

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 16

Some Important Questions to Ask
What is Assembly Language?

What is Machine Language?

How is Assembly related to a high-level language?

Why Learn Assembly Language?

What is an Assembler, Linker, and Debugger?

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 17

A Hierarchy of Languages
Application Programs

High-Level Languages

Assembly Language

Machine Language

Hardware

High-Level Language
Low-Level Language

Machine independent
Machine specific

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 18

Assembly and Machine Language
Machine language

Native to a processor: executed directly by hardware
Instructions consist of binary code: 1s and 0s

Assembly language
Slightly higher-level language

Readability of instructions is better than machine language

One-to-one correspondence with machine language instructions

Assemblers translate assembly to machine code

Compilers translate high-level programs to machine code
Either directly, or

Indirectly via an assembler

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 19

Compiler and Assembler

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 20

Instructions and Machine Language
Each command of a program is called an instruction (it
instructs the computer what to do).

Computers only deal with binary data, hence the
instructions must be in binary format (0s and 1s) .

The set of all instructions (in binary form) makes up the
computer's machine language. This is also referred to as
the instruction set.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 21

Instruction Fields
Machine language instructions usually are made up of
several fields. Each field specifies different information
for the computer. The major two fields are:

Opcode field which stands for operation code and it
specifies the particular operation that is to be performed.

Each operation has its unique opcode.

Operands fields which specify where to get the source
and destination operands for the operation specified by
the opcode.

The source/destination of operands can be a constant, the
memory or one of the general-purpose registers.

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 22

MIPS Assembly Language:
sll $2,$5, 2
add $2,$4,$2
lw $15,0($2)
lw $16,4($2)
sw $16,0($2)
sw $15,4($2)
jr $31

Compiler

Translating Languages
Program (C Language):
swap(int v[], int k) {

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

A statement in a high-level
language is translated
typically into several

machine-level instructions

MIPS Machine Language:
00051080
00821020
8C620000
8CF20004
ACF20000
AC620004
03E00008

Assembler

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 23

Advantages of High-Level Languages
Program development is faster

High-level statements: fewer instructions to code

Program maintenance is easier
For the same above reasons

Programs are portable
Contain few machine-dependent details

Can be used with little or no modifications on different machines

Compiler translates to the target machine language

However, Assembly language programs are not portable

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 24

Why Learn Assembly Language?
Many reasons:

Accessibility to system hardware

Space and time efficiency

Writing a compiler for a high-level language

Accessibility to system hardware
Assembly Language is useful for implementing system software

Also useful for small embedded system applications

Space and Time efficiency
Understanding sources of program inefficiency

Tuning program performance

Writing compact code

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 25

Assembly vs. High-Level Languages
Some representative types of applications:

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 26

Assembly Language Programming Tools
Editor

Allows you to create and edit assembly language source files

Assembler
Converts assembly language programs into object files

Object files contain the machine instructions

Linker
Combines object files created by the assembler with link libraries

Produces a single executable program

Debugger
Allows you to trace the execution of a program

Allows you to view machine instructions, memory, and registers

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 27

Assemble and Link Process
Source

File

Source
File

Source
File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker Executable
File

Link
Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 28

MARS Assembler and Simulator Tool

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 29

Next . . .
Welcome to ICS 233

High-Level, Assembly-, and Machine-Languages

Components of a Computer System

Chip Manufacturing Process

Technology Improvements

Programmer's View of a Computer System

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 30

Processor
Datapath

Control

Memory & Storage
Main Memory

Disk Storage

Input devices

Output devices

Bus: Interconnects processor to memory and I/O

Network: newly added component for communication

Components of a Computer System
Computer

Memory

I/O Devices

Input

Output
B
U
S

Control

Datapath

Processor

Disk

Network

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 31

Input Devices

Logical arrangement of keys
0 1 2 3

c d e f

8 9 a b

4 5 6 7

Mechanical switch

Spring

Key Cap

Contacts

Membrane switch

Conductor-coated membrane

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 32

Output Devices

Laser printing

Rollers

Sheet of paper

Light from
optical
system

Toner

Rotating
drum

Cleaning of
excess toner

Charging

Heater

Fusing of toner

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 33

Memory
Ordered sequence of bytes

The sequence number is called the memory address

Byte addressable memory
Each byte has a unique address

Supported by almost all processors

Physical address space
Determined by the address bus width

Pentium has a 32-bit address bus
Physical address space = 4GB = 232 bytes

Itanium with a 64-bit address bus can support
Up to 264 bytes of physical address space

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 34

Address Space

Address Space is
the set of memory
locations (bytes) that
can be addressed

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 35

Address, Data, and Control Bus
Address Bus

Memory address is put on address bus

If memory address = a bits then 2a locations are addressed

Data Bus: bi-directional bus
Data can be transferred in both directions on the data bus

Control Bus
Signals control
transfer of data

Read request

Write request

Done transfer

Memory
0
1
2
3

2a – 1

. . .read
write
done

data bus

address bus
Processor

d bits

a bitsAddress Register

Data Register

Bus Control

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 36

Memory Devices
Volatile Memory Devices

Data is lost when device is powered off
RAM = Random Access Memory
DRAM = Dynamic RAM

1-Transistor cell + trench capacitor
Dense but slow, must be refreshed
Typical choice for main memory

SRAM: Static RAM
6-Transistor cell, faster but less dense than DRAM
Typical choice for cache memory

Non-Volatile Memory Devices
Stores information permanently
ROM = Read Only Memory
Used to store the information required to startup the computer
Many types: ROM, EPROM, EEPROM, and FLASH
FLASH memory can be erased electrically in blocks

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 37

Arm provides read/write
heads for all surfaces
The disk heads are
connected together and
move in conjunction

Track 0
Track 1

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

A Magnetic disk consists of
a collection of platters
Provides a number of
recording surfaces

Magnetic Disk Storage

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 38

Magnetic Disk Storage

Track 0
Track 1

Sector

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Access Time =
Seek Time +
Rotation Latency +
Transfer Time

Seek Time: head movement to the
desired track (milliseconds)

Rotation Latency: disk rotation until
desired sector arrives under the head

Transfer Time: to transfer data

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 39

Example on Disk Access Time
Given a magnetic disk with the following properties

Rotation speed = 7200 RPM (rotations per minute)
Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

Calculate
Time of one rotation (in milliseconds)
Average time to access a block of 32 consecutive sectors

Answer
Rotations per second
Rotation time in milliseconds
Average rotational latency
Time to transfer 32 sectors
Average access time

= 7200/60 = 120 RPS
= 1000/120 = 8.33 ms

= time of half rotation = 4.17 ms
= (32/200) * 8.33 = 1.33 ms

= 8 + 4.17 + 1.33 = 13.5 ms

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 40

Processor-Memory Performance Gap

1980 – No cache in microprocessor

1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

Processor-Memory
Performance Gap:
(grows 50% per year)

P
er

fo
rm

an
ce

“Moore’s Law”

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 41

The Need for a Memory Hierarchy
Widening speed gap between CPU and main memory

Processor operation takes less than 1 ns

Main memory requires more than 50 ns to access

Each instruction involves at least one memory access
One memory access to fetch the instruction

A second memory access for load and store instructions

Memory bandwidth limits the instruction execution rate

Cache memory can help bridge the CPU-memory gap

Cache memory is small in size but fast

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 42

Typical Memory Hierarchy
Registers are at the top of the hierarchy

Typical size < 1 KB

Access time < 0.5 ns

Level 1 Cache (8 – 64 KB)
Access time: 0.5 – 1 ns

L2 Cache (512KB – 8MB)
Access time: 2 – 10 ns

Main Memory (1 – 2 GB)
Access time: 50 – 70 ns

Disk Storage (> 200 GB)
Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

Fa
st

er

B
ig

ge
r

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 43

Processor
Datapath: part of a processor that executes instructions

Control: generates control signals for each instruction

A
L
U

Registers
In

st
ru

ct
io

n

Pr
og

ra
m

 C
ou

nt
er

Instruction
Cache

Next Program
Counter

Data
Cache

Control

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 44

Datapath Components
Program Counter (PC)

Contains address of instruction to be fetched
Next Program Counter: computes address of next instruction

Instruction Register (IR)
Stores the fetched instruction

Instruction and Data Caches
Small and fast memory containing most recent instructions/data

Register File
General-purpose registers used for intermediate computations

ALU = Arithmetic and Logic Unit
Executes arithmetic and logic instructions

Buses
Used to wire and interconnect the various components

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 45

Fetch instruction
Compute address of next instruction

Generate control signals for instruction
Read operands from registers

Compute result value

Writeback result in a register

Fetch - Execute Cycle

Instruction Decode

Instruction Fetch

Execute

Writeback ResultIn
fin

ite
 C

yc
le

 im
pl

em
en

te
d

in
 H

ar
dw

ar
e

Memory Access Read or write memory (load/store)

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 46

Next . . .
Welcome to ICS 233

Assembly-, Machine-, and High-Level Languages

Components of a Computer System

Chip Manufacturing Process

Technology Improvements

Programmer's View of a Computer System

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 47

Chip Manufacturing Process

Silicon ingot

Slicer

Blank wafers

20 to 30 processing steps

8-12 in diameter
12-24 in long

< 0.1 in thick

Patterned wafer

Dicer

Individual dies

Die
Tester

Tested dies

Bond die to
package

Packaged dies

Part
Tester

Tested Packaged dies

Ship to
Customers

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 48

Wafer of Pentium 4 Processors
8 inches (20 cm) in diameter
Die area is 250 mm2

About 16 mm per side

55 million transistors per die
0.18 μm technology
Size of smallest transistor
Improved technology uses

0.13 μm and 0.09 μm

Dies per wafer = 169
When yield = 100%
Number is reduced after testing
Rounded dies at boundary are useless

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 49

Dramatic decrease in yield with larger dies

Yield = (Number of Good Dies) / (Total Number of Dies)

Effect of Die Size on Yield

Defective Die

Good Die

120 dies, 109 good 26 dies, 15 good

(1 + (Defect per area × Die area / 2))2

1
Yield =

Die Cost = (Wafer Cost) / (Dies per Wafer × Yield)

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 50

Inside the Pentium 4 Processor Chip

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 51

Next . . .
Welcome to ICS 233

Assembly-, Machine-, and High-Level Languages

Components of a Computer System

Chip Manufacturing Process

Technology Improvements

Programmer's View of a Computer System

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 52

Technology Improvements
Vacuum tube → transistor → IC → VLSI

Processor
Transistor count: about 30% to 40% per year

Memory
DRAM capacity: about 60% per year (4x every 3 yrs)

Cost per bit: decreases about 25% per year

Disk
Capacity: about 60% per year

Opportunities for new applications

Better organizations and designs

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 53

Growth of Capacity per DRAM Chip
DRAM capacity quadrupled almost every 3 years

60% increase per year, for 20 years

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 54

Workstation Performance

More than 1000 times
improvement between
1987 and 2003

Improvement is between
50% and 60% per year

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 55

Microprocessor Sales (1998 – 2002)

ARM processor
sales exceeded Intel
IA-32 processors,
which came second

ARM processors
are used mostly in
cellular phones

Most processors
today are embedded
in cell phones, video
games, digital TVs,
PDAs, and a variety
of consumer devices

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 56

Microprocessor Sales – cont'd

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 57

Next . . .
Welcome to ICS 233

Assembly-, Machine-, and High-Level Languages

Components of a Computer System

Chip Manufacturing Process

Technology Improvements

Programmer's View of a Computer System

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 58

Programmer’s View of a Computer System

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Physical Design Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 Increased level
of abstraction

Each level hides
the details of the

level below it

Software

Hardware

Interface
SW & HW

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 59

Programmer's View – 2
Application Programs (Level 5)

Written in high-level programming languages
Such as Java, C++, Pascal, Visual Basic . . .
Programs compile into assembly language level (Level 4)

Assembly Language (Level 4)
Instruction mnemonics are used
Have one-to-one correspondence to machine language
Calls functions written at the operating system level (Level 3)
Programs are translated into machine language (Level 2)

Operating System (Level 3)
Provides services to level 4 and 5 programs
Translated to run at the machine instruction level (Level 2)

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 60

Programmer's View – 3
Instruction Set Architecture (Level 2)

Interface between software and hardware

Specifies how a processor functions

Machine instructions, registers, and memory are exposed

Machine language is executed by Level 1 (microarchitecture)

Microarchitecture (Level 1)
Controls the execution of machine instructions (Level 2)

Implemented by digital logic

Physical Design (Level 0)
Implements the microarchitecture

Physical layout of circuits on a chip

Introduction ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar slide 61

Course Roadmap
Instruction set architecture (Chapter 2)

MIPS Assembly Language Programming (Chapter 2)

Computer arithmetic (Chapter 3)

Performance issues (Chapter 4)

Constructing a processor (Chapter 5)

Pipelining to improve performance (Chapter 6)

Memory and caches (Chapter 7)

Key to obtain a good grade: read the textbook!

