Multiplexers and Demultiplexers

In this lesson, you will learn about:

1. Multiplexers
2. Combinational circuit implementation with multiplexers
3. Demultiplexers
4. Some examples

Multiplexer

A Multiplexer (see Figure 1) is a combinational circuit that selects one of the 2^{n} input signals $\left(D_{0}, D_{1}, D_{2}, \ldots \ldots, D_{2}{ }^{n}{ }_{-1}\right)$ to be passed to the single output line Y.
Q. How to select the input line (out of the possible 2^{n} input signals) to be passed to the output line?
A. Selection of the particular input to be passed to the output is controlled by a set of n input signals called "Select Inputs" $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots \ldots, \mathrm{~S}_{\mathrm{n}-1}\right)$.

Figure 1: Multiplexer

Example 1: 2x1 Mux
A 2×1 Mux has 2 input lines $\left(D_{0} \& D_{1}\right)$, one select input (S), and one output line (Y). (see Figure 2)

IF $\mathrm{S}=0$, then $\mathrm{Y}=\mathrm{D}_{0}$
Else $(\mathrm{S}=1) \quad \mathrm{Y}=\mathrm{D}_{1}$

Figure 2: A 2×1 Multiplexer
Thus, the output signal Y can be expressed as:
$Y=\bar{S} D_{0}+S D_{1}$
Example 2: 4x 1 Mux
A 4×1 Mux has 4 input lines $\left(D_{0}, D_{1}, D_{2}, D_{3}\right)$, two select inputs $\left(S_{0} \& S_{1}\right)$, and one output line Y. (see Figure 3)

$$
\begin{array}{ll}
\text { IF } \mathrm{S}_{1} \mathrm{~S}_{0}=00 \text {, then } & \mathrm{Y}=\mathrm{D}_{0} \\
\text { IF } \mathrm{S}_{1} \mathrm{~S}_{0}=01 \text {, then } & \mathrm{Y}=\mathrm{D}_{1} \\
\text { IF } \mathrm{S}_{1} \mathrm{~S}_{0}=10 \text {, then } & \mathrm{Y}=\mathrm{D}_{2} \\
\text { IF } \mathrm{S}_{1} \mathrm{~S}_{0}=11 \text {, then } & \mathrm{Y}=\mathrm{D}_{3}
\end{array}
$$

Thus, the output signal Y can be expressed as:

$$
Y=\underbrace{\overline{S_{1}} \overline{S_{0}}}_{\text {minterm }} D_{0}+\underbrace{\overline{S_{1} S_{0}} D_{1}}_{\text {minterm }}+\underbrace{S_{1} \bar{S}_{0}}_{\text {minterm }} D_{2}+\underbrace{S_{1} S_{0}}_{\text {minterm }} D_{3}
$$

Obviously, the input selected to be passed to the output depends on the minterm expressions of the select inputs.

Figure 3: A 4 X 1 Multiplexer

In General,
For MUXes with n select inputs, the output Y is given by
$\mathbf{Y}=\mathbf{m}_{0} \mathbf{D}_{0}+\mathbf{m}_{1} \mathbf{D}_{1}+\mathbf{m}_{2} \mathbf{D}_{2}+\ldots+\mathbf{m}_{2}{ }^{n}{ }_{-1} \mathbf{D}_{2}{ }^{n}{ }_{-1}$
Where $\mathrm{m}_{i}=i^{\text {th }}$ minterm of the Select Inputs
Thus
$Y=\sum_{i=0}^{2^{n}-1} m_{i} D_{i}$
Example 3: Quad 2X1 Mux
Given two 4 -bit numbers A and B, design a multiplexer that selects one of these 2 numbers based on some select signal S. Obviously, the output (Y) is a 4-bit number.

Figure 4: Ouad 2×1 Multiplexer

The 4-bit output number Y is defined as follows:

$$
\mathrm{Y}=\mathrm{A} \text { IF } \mathrm{S}=0 \text {, otherwise } \mathrm{Y}=\mathrm{B}
$$

The circuit is implemented using four 2×1 Muxes, where the output of each of the Muxes gives one of the outputs $\left(\mathrm{Y}_{\mathrm{i}}\right)$.

Combinational Circuit Implementation using Muxes
Problem Statement:
Given a function of n-variables, show how to use a MUX to implement this function.
This can be accomplished in one of 2 ways:
> Using a Mux with n -select inputs
> Using a Mux with $\mathrm{n}-1$ select inputs

Method 1: Using a Mux with n-select inputs

 n variables need to be connected to n select inputs. For a MUX with n select inputs, the output Y is given by:$\mathbf{Y}=\mathbf{m}_{0} \mathbf{D}_{0}+\mathbf{m}_{1} \mathbf{D}_{1}+\mathbf{m}_{2} \mathbf{D}_{2}+\ldots+\mathbf{m}_{2}{ }_{-1}{ }_{-1} \mathbf{D}_{2}{ }^{n}{ }_{-1}$
Alternatively,

$$
Y=\sum_{i=0}^{2^{n}-1} m_{i} D_{i}
$$

Where $\mathrm{m}_{i}=i^{\text {th }}$ minterm of the Select Inputs
The MUX output expression is a SUM of minterms expression for all minterms $\left(\mathrm{m}_{i}\right)$ which have their corresponding inputs $\left(\mathrm{D}_{i}\right)$ equal to 1.

Thus, it is possible to implement any function of n-variables using a MUX with n-select inputs by proper assignment of the input values ($\mathrm{D}_{i} \in\{0,1\}$).
$\mathrm{Y}\left(\mathrm{S}_{n-1} \ldots \ldots \mathrm{~S}_{l} \mathrm{~S}_{0}\right)=\sum$ (minterms $)$
Example 4: Implement the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(1,3,5,6)$ (see Figure 5)
Since number of variables $n=3$, this requires a Mux with 3 select inputs, i.e. an $8 x 1$ Mux
The most significant variable A is connected to the most significant select input S_{2} while the least significant variable C is connected to the least significant select input S_{0}, thus:

$$
\mathrm{S}_{2}=\mathrm{A}, \mathrm{~S}_{1}=\mathrm{B}, \text { and } \mathrm{S}_{0}=\mathrm{C}
$$

For the MUX output expression (sum of minterms) to include minterm 1 we assign $D_{1}=1$
Likewise, to include minterms 3, 5, and 6 in the sum of minterms expression while excluding minterms $0,2,4$, and 7 , the following input $\left(D_{i}\right)$ assignments are made

Figure 5: Implementing function with Mux with \mathbf{n} select inputs

Method 2: Using a Mux with ($\mathrm{n}-1$) select inputs
Any n-variable logic function can be implemented using a Mux with only ($\mathrm{n}-1$) select inputs (e.g 4-to-1 mux to implement any 3 variable function)

This can be accomplished as follows:
$>$ Express function in canonical sum-of-minterms form.
$>$ Choose $\mathrm{n}-1$ variables to be connected to the mux select lines.
$>$ Construct the truth table of the function, but grouping the $\mathrm{n}-1$ select input variables together (e.g. by making the $\mathrm{n}-1$ select variables as most significant inputs).
The values of D_{i} (mux input line) will be 0 , or 1 , or $\mathrm{n}^{\text {th }}$ variable or complement of $\mathrm{n}^{\text {th }}$ variable of value of function F , as will be clarified by the following example.

Example 5: Implement the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(1,2,6,7)$ (see figure 6)
This function can be implemented with a 4-to-1 line MUX.
A and B are applied to the select line, that is

$$
A \Rightarrow S_{1}, B \Rightarrow S_{0}
$$

The truth table of the function and the implementation are as shown:

A B

	A	B	C	F	
1	0	0	0	0	$\mathrm{F}=\mathrm{C}$
	0	0	1	1	
2	0	1	0	1	$\mathrm{F}=\mathrm{C}^{\prime}$
	0	1	1	0	
3	1	0	0	0	$\mathrm{F}=0$
	0	1	1	0	
-	1	1	0	1	$\mathrm{F}=1$
-	1	1	1	1	

Figure 6: Implementing function with Mux with $\mathbf{n}-1$ select inputs

Example 6: Consider the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,3,4,11,12,13,14,15)$
This function can be implemented with an 8-to-1 line MUX (see Figure 7)
A, B, and C are applied to the select inputs as follows:

$$
A \Rightarrow S_{2}, B \Rightarrow S_{1}, C \Rightarrow S_{0}
$$

The truth table and implementation are shown.

A	B	C	D	F	
O	O	O	O	O	$\mathrm{F}=\mathrm{D}$
O	O	O	1	1	
O	O	1	O	O	$\mathrm{F}=\mathrm{D}$
O	O	1	1	1	
O	1	O	O	1	$\mathrm{~F}=\overline{\mathrm{D}}$
O	1	O	1	O	
O	1	1	O	O	$\mathrm{F}=\mathrm{O}$
O	1	1	1	O	
1	O	O	O	O	$\mathrm{F}=\mathrm{O}$
1	O	O	1	O	
1	O	1	O	O	$\mathrm{F}=\mathrm{D}$
1	O	1	1	1	
1	1	O	O	1	$\mathrm{~F}=1$
1	1	O	1	1	
1	1	1	O	1	$\mathrm{~F}=1$
1	1	1	1	1	

Figure 7: Implementing function of Example 6

Demultiplexer

It is a digital function that performs inverse of the multiplexing operation.
It has one input line (E) and transmits it to one of 2^{n} possible output lines $\left(D_{0}, D_{1}, D_{2}, \ldots\right.$, $\left.\mathrm{D}_{2}{ }^{n}{ }_{-1}\right)$. The selection of the specific output is controlled by the bit combination of n select inputs.

Figure 8: A demultiplexer
Example 7: A 1-to-4 line Demux
The input E is directed to one of the outputs, as specified by the two select lines S_{1} and S_{0}.
$D_{0}=E$ if $S_{1} S_{0}=00 \Rightarrow D_{0}=S_{1}{ }^{\prime} S_{0}{ }^{\prime} E$
$D_{1}=E$ if $S_{1} S_{0}=01 \Rightarrow D_{1}=S_{1}{ }^{\prime} S_{0} E$
$D_{2}=E$ if $S_{1} S_{0}=10 \Rightarrow D_{2}=S_{1} S_{0}{ }^{\prime} E$
$\mathrm{D}_{3}=\mathrm{E}$ if $\mathrm{S}_{1} \mathrm{~S}_{0}=11 \Rightarrow \mathrm{D}_{3}=\mathrm{S}_{1} \mathrm{~S}_{0} \mathrm{E}$
A careful inspection of the Demux circuit shows that it is identical to a 2 to 4 decoder with enable input.

Figure 8: A 1-to-4 line demultiplexer
$>$ For the decoder, the inputs are A_{1} and A_{0}, and the enable is input E . (see figure 9) $>$ For demux, input E provides the data, while other inputs accept the selection variables. $>$ Although the two circuits have different applications, their logic diagrams are exactly the same.

Decimal value	Enable	Inputs			Outputs			
	\mathbf{E}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	
	$\mathbf{0}$	\mathbf{X}	\mathbf{X}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	

Figure 9: Table for 1-to-4 line demultiplexer

