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Lesson Objectives: 
Even though Boolean expressions can be simplified by algebraic manipulation, such 
an approach lacks clear regular rules for each succeeding step and it is difficult to 
determine whether the simplest expression has been achieved. 
 
In contrast, Karnaugh map (K-map) method provides a straightforward procedure for 
simplifying Boolean functions.  
 
K-maps of up to 4 variables are very common to use. Maps of 5 and 6 variables can 
be made as well, but are more cumbersome to use. 
 
Simplified expressions produced by K-maps are always either in the SOP or the POS 
form. 
 
The map provides the same information contained in a Truth Table but in a different 
format. 
 
The objectives of this lesson are to learn: 
1. How to build a 2, 3, or 4 variables K-map. 
2. How to obtain a minimized SOP function using K-maps. 
 
Code Distance: 
Let’s first define the concept of Code Distance. The distance between two binary 
code-words is the number of bit positions in which the two code-words have different 
values.  
 
For example, the distance between the code words 1001 and 0001 is 1 while the 
distance between the code-words 0011 and 0100 is 3. 
 
This definition of code distance is commonly known as the Hamming distance 
between two codes. 
 
Two-Variable K-Maps: 
The 2-variable map is a table of 2 rows by 2 columns. The 2 rows represent the two 
values of the first input variable A, while the two columns represent the two values of 
the second input variable B. 
 
Thus, all entries (squares) in the first row correspond to input variable A=0, while 
entries (squares) of the second row correspond to A=1. 
 
Likewise, all entries of the first column correspond to input variable B = 0, while 
entries of the second column correspond to B=1. 
 
Thus, each map entry (or square) corresponds to a unique value for the input variables 
A and B. 



 
For example, the top left square corresponds to input combination AB=00. In other 
words, this square represents minterm m0. 
 
Likewise, the top right square corresponds to input combination AB=01, or minterm 
m1 and the bottom left square corresponds to input combination AB=10, or minterm 
m2. Finally, the bottom right square corresponds to input combination AB=11, or 
minterm m3. 
 
In general, each map entry (or square) corresponds to a particular input combination 
(or minterm). 
 
Since, Boolean functions of two-variables have four minterms, a 2-variable K-map 
can represent any 2-variable function by plugging the function value for each input 
combination in the corresponding square. 
 
Definitions/Notations: 
Two K-map squares are considered adjacent if the input codes they represent have a 
Hamming distance of 1. 
 
A K-map square with a function value of 1 will be referred to as a 1-Square. 
A K-map square with a function value of 0 will be referred to as a 0-Square. 
 
The simplification procedure is summarized below: 
 
Step 1: Draw the map according to the number of input variables of the function. 
Step 2: Fill “1’s” in the squares for which the function is true. 
Step 3: Form as big group of adjacent 1-squares as possible. There are some rules for 
this which you will learn with bigger maps. 
Step 4: Find the common literals for each group and write the simplified expression 
in SOP. 
 
Example: 
Consider the given truth table of two variable function. Obtain the simplified function 
using K-map. 
 

 
A B F 
0 0 0 
0 1 0 
1 0 1 
1 1 1 



 
First draw a 2-variable K-map. The function F is true when AB’ (m2) is true and when 
AB (m3) is true, so a 1 is placed inside the square that belongs to m2 and a 1 is placed 
inside the square that belongs to m3. 

 
Since both of the 1-squares have different values for variable B but the same value for 
variable A, which is 1, i.e., wherever A = 1 then F = 1 thus F = A. 
 
This simplification is justified by algebraic manipulation as follows:  
F = m2 + m3 = AB’ + AB = A (B’ + B) = A 
 
To understand how combining squares simplifies Boolean functions, the basic 
property possessed by the adjacent squares must be recognized. 
 
In the above example, the two 1-squares are adjacent with the same value for variable 
A (A=1) but different values for variable B (one square has B=0, while the other has 
B=1). 
 
This reduction is possible since both squares are adjacent and the net expression is 
that of the common variable (A). 
 
Generally, this is true for any 2 codes of Hamming distance 1 (adjacent). For an n-
variable K-map, let the codes of two adjacent squares (distance of 1) have the same 
value for all variables except the ith variable. Thus, 
 
Code of 1st Square:  nii XXXXX ............... 1121 +− iX
Code of 2nd Square: nii XXXXX ............... 1121 +− iX  
 
Combining these two squares in a group will eliminate the different variable Xi and 
the combined expression will be  

nii XXXXX .............. 1121 +−  
since: 
( )++− nii XXXXX ............... 1121 iX ( )nii XXXXX ............... 1121 +− iX  

( )nii XXXXX .............. 1121 +−= ( +iX )iX  
( )nii XXXXX .............. 1121 +−=  

The variable in difference is dropped. 
 
Another Example: 
Simplify the given function using K-map method: 
F = ∑ (1, 2, 3) 



 
 
In this example: 
F = m1 + m2 + m3 = m1 + m2 + (m3 + m3) 
F = (m1 + m3) + (m2 + m3) = A + B 
 

 Rule: A 1-square can be member of more than one group. 
 
If we exchange the places of A and B, then minterm positions will also change. Thus, 
m1 and m2 will be exchanged as well. 

                 
 
In an n-variable map each square is adjacent to “n” other squares, e.g., in a 2-variable 
map each square is adjacent to two other squares as shown below: 

 
 

Examples of non-adjacent squares are shown below: 
 

 



Three-Variable K-Maps: 
There are eight minterms for a Boolean function with three-variables. Hence, a three-
variable map consists of 8 squares. 

 
All entries (squares) in the first row correspond to input variable A=0, while entries 
(squares) of the second row correspond to A=1. 
 
Likewise, all entries of the first column correspond to input variable B = 0, C = 0, all 
entries of the second column correspond to input variable B = 0, C = 1, all entries of 
the third column correspond to input variable B = 1, C = 1, while entries of the fourth 
column correspond to B=1, C = 0. 
 
To maintain adjacent columns physically adjacent on the map, the column coordinates 
do not follow the binary count sequence. This choice yields unit distance between 
codes of one column to the next (00 – 01—11 – 10), like Grey Code. 
 
Variations of Three-Variable Map: 
The figure shows variations of the three-variable map. Note that the minterm 
corresponding to each square can be obtained by substituting the values of variables 
ABC in order. 

 
 
Examples: (see authorware version) 



There are cases where two squares in the map are considered to be adjacent even 
though they do not physically touch each other. 
 
In the figure of 3-variable map, m0 is adjacent to m2 and m4 is adjacent to m6 because 
the minterms differ by only one variable. This can be verified algebraically:  
m0 + m2 = A’B’C’ + A’BC’ = A’C’ (B’ + B) = A’C’ 
m4 + m6 = AB’C’ + ABC’ = AC’ (B’ + B) = AC’ 

 
 Rule: Groups may only consist of 2, 4, 8, 16,… squares (always power of 2). For 

example, groups may not consist of 3, 6 or 12 squares. 
 

 Rule: Members of a group must have a closed loop adjacency, i.e., L-Shaped 4 
squares do not form a valid group. 

 
 Notes: 

1. Each square is adjacent to 3 other squares. 
2. One square is represented by a minterm (i.e. a product term containing all 3 

literals). 
3. A group of 2 adjacent squares is represented by a product term containing only 2 

literals, i.e., 1 literal is dropped. 
4. A group of 4 adjacent squares is represented by a product term containing only 1 

literal, i.e., 2 literals are dropped. 
 
Four-Variable K-Maps: 
 
There are 16 minterms for a Boolean function with four-variables. Hence, four-
variable map consists of 16 squares. 

 



 Notes: 
1. 
2. 
3. 
4. 
5. 

Each square is adjacent to 4 other squares. 
One square is represented by a minterm (a product of all 4-literals). 
Combining 2 squares drops 1-literal. 
Combining 4 squares drops 2-literals. 
Combining 8 squares drops 3-literals. 

 
Examples: (see authorware version) 
 

 Rule: The combination of squares that can be chosen during the simplification 
process in the n-variable map are as follows: 
A group of 2n squares produces a function that always equal to logic 1. 
A group of 2n-1 squares represents a product term of one literal. 
A group of 2n-2 squares represents a product term of two literals and so on. 
One square represents a minterm of n literals. 
 


