KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS COLLEGE OF COMPUTER SCIENCE AND ENGINEERING COMPUTER ENGINEERING DEPARTMENT

COE 205 - Term 061 Assignment #3

Problem 1 (20 points)

Consider the following:

.data

 Table1
 DWORD 8, 10h, 9, 20h, 10, 23h, F6h, 22h, 16h

 NumE
 EQU 9

 Result
 DWORD ?

 .code MOV EBX, OFFSET Table1 ECX, NumE MOV MOV ESI, O EAX, 0 EAX, [EBX+ESI*4] ; Compare values MOV Lp1: CMP Cont JAE ; Jump if Above or Equal MOV EAX, [EBX+ESI*4] Cont: INC ESI LOOP Lp1 MOV Result, AX

- 1. What is the directive EQU used for?
- 2. What is the effect of the directive OFFSET?
- 3. What is the value of the variable Result after the execution of the program?
- 4. What does this program do?

Problem 2 (20 points)

Consider the following:

.data		
Table1		BYTE 01, 03, 06, 12, 15, 16, 20, 23, 27, 31, 34, 67
NumE	1	EQU 12 BYTE 10 DUP(?)
Var1 Var2		BYTE 19 BYTE 54
.code		
1000.0	MOV	ESI, O
Loop1:		AL, Table1[ESI]
поорт.		AL, Var1 ;Compare instruction
		· · · ·
		Insert ;Jump if Greater or Equal
	INC	ESI
	CMP	ESI, NumE ;Compare Instruction
	JNZ	Loop1 ;Jump if Result Not Zero
Insert:	MOV	BL, Var1
1110 01 01	MOV	
Loon2		ESI
Loop2 :		
		BL, Table1[ESI]
		Table1[ESI], AL
	MOV	AL, BL
	CMP	ESI, NumE+1
	JNZ	Loop2
		-

- 1. What does the first loop (Label **Loop1**) do? Explain.
- 2. What does the second loop (Label Loop2) do? Explain
- 3. What does the sequence between the label **Insert** and the label **Loop2** do? Explain.
- 4. What does this program do? Explain.

Problem 3 (20 points)

```
Consider the following program.
.data
     Table BYTE 2, 3, 7, 1, 2, 5, 6
     NumE EQU SIZEOF Table-1
     Var
           BYTE ?
.code
     MOV
           EBX, OFFSET Table
     MOV
           ECX, NumE
     MOV
           AL, 0
           AL, [EBX]
EBX
Lp1: ADD
     INC
     LOOP Lp1
           Var, AL
     MOV
```

- a. What will be the value of AL after the execution of the program?
- b. What does this program do?
- c. Modify this program to take care of when the result is larger than 255 (byte maximum value). We suppose that the result would fit in a 32-bits word.

Problem 4 (20 points)

Consider the following program:

.data Table1 Table2 Table3		BYTE 5, 10, 15, 20, 22, 27, 30, 56, 2, 78 BYTE 67, 1, 78, 2, 89, 3, 95, 4, 76, 5 BYTE SIZEOF Table1 DUP(0)
.code Lp1:	MOV MOV MOV	EBX, OFFSET Table1 ESI, 0 ECX, SIZEOF Table1 AL, [EBX+ESI] AL, [EBX+SIZEOF Table1+ESI]
Write:	JGE NEG MOV	Write ; Jump if Greater or Equal AL [EBX+SIZEOF Table1+SIZEOF Table2+ESI], AL ESI Lp1

- a. What is the addressing mode [EBX+ESI] called?
 - A. Indexed
 - B. Based
 - C. Based-indexed
- a. What is the addressing mode [SIZEOF Table1+ESI] called?
 - A. Indexed
 - B. Based-indexed
 - C. Based-indexed with displacement
- b. What is the value of the address pointed to by [EBX+SIZEOIF Table1+ESI] when ESI =3
- c. What does this program do?

Problem 5 (20 points)

Write a program that counts the number of even number in a defined table of bytes. The size of the array is arbitrary. An even number is a number that has the LSB bit equal to 0. To find out whether a number is even or not, do the following:

- Move the number into AL
- Execute the instruction AND AL, 01h; which will make a bitwise logic AND between every bit in AL and the constant 01h which means will produce a result that has all bits at 0 except the LSB which can either be 0 or 1 depending whether AL contained an even or odd number.