King Fahd University of Petroleum and Minerals College of Computer Science and Engineering COMPUTER ENGINEERING DEPARTMENT'

COE 202-Term 053
 Assignment \#5

Q. 1 (10 points)

Consider the following circuit:

All the flip-flops are positive edge triggered. At initialization, they are all initialized to 0 . Draw the timing diagram showing Clk and \mathbf{Y}. You may want to represent any intermediate signal ($\mathbf{D} \mathbf{0}$ or $\mathbf{D} 1$ or both) to help you determine the value of \mathbf{Y}. The representation of $\mathbf{D} \mathbf{0}$ or $\mathbf{D} 1$ is not mandatory.

Q. 2 (20 points)

A designer needs a circuit that detects the binary sequence $\mathbf{0 1 1 1}$. The circuit should have one input \mathbf{I} and one output \mathbf{Y}. The input is synchronous to a clock $\mathbf{C k}$ and changes on the positive edge of $\mathbf{C k}$.

1. Design a state machine (Moore type) that detects the sequence $\mathbf{0 1 1 1}$ and draw its state diagram.
2. Represent the state transistion table of the state machine
3. Represent the excitation table of the state machine using D-type flip flops
4. Give the equations and draw the circuit of the state machine.

Q. 3 (30 points)

A designer of a binary transmission system wants to balance the number of 1 s and 0 s . To do that, it decides to flip the $5^{\text {th }}$ bit of value 1 in a sequence of five 1 s and flip the $5^{\text {th }}$ bit of value 0 in a sequence of five 0s.

1. Design the state machine that detects a sequence of five consecutive 1 s and a sequence of five consecutive 0 s. The state machine should be of Mealy type and should have a single output Y which should be 1 only when 5 consecutive bits of value 1 or value 0 have been detected. Y should be 1 during the same clock cycle as the $5^{\text {th }}$ bit of the sequence.
2. Represent the state transition table and the state excitation table. Extract the equations and represent the circuit.

Q. 4 (10 points)

1. Design an 8 bits shift register that has the following characteristics:

- Capable of shifting left or right (selectable using $\mathbf{L R}$ input: $\mathbf{L R}=0$: left; $\mathbf{L R}=1$: right)
- Single serial input SI for both shift left and right
- Uses positive edge-triggered D-type flip-flops.

2. Using this shift register design a shift register that maintains a single bit at 1 while all the other 7 bits will be at 0 . The 1 is inserted on the first shift (either left or right) through the serial input SI to the MSB or LSB (depending on the shift). All subsequent shifts will move the 1 either left or right. After initialization the register should have a single bit at 1 all the time and any sequence of shifts should maintain this characteristic.

Q. 5 (20 points)

Using blocks 4-bits synchronous binary counters with synchronous clear design a counter that divides a clock by 384. This means that the frequency of the output should be equal to the frequency of the input clock divided by 384.

Q. 6 (20 points)

We want to design the basic building block of a human clock that displays the current time. This is a BCD counter that counts from 00 to 59 or from 00 to 12 .

1. Design a single digit BCD counter that counts from 0 to 9 using a 4 -bits synchronous binary counter with synchronous clear (reset).
2. Design a two digit BCD counter that counts from 00 to 12 using 24 -bits synchronous binary counters with synchronous clear (reset).
3. Design a two digit BCD counter that counts from 00 to 59 using 24 -bits synchronous binary counters with synchronous clear (reset).
4. Merge the design of 2 and 3 to make a single BCD counter that is capable of counting from 00 to:

- either 12
- or 59

The max is selectable using a single input \mathbf{K}.

