King Fahd University of Petroleum and Minerals
 College of Computer Science and Engineering COMPUTER ENGINEERING DEPARTMENT

COE 202- Term 053
 Assignment \#2

Q. 1 (20 points)

Represent the following negative numbers in binary in 1 s and 2 s complement on 16 bits.

- $-(234)_{10}$
- - (756) ${ }_{8}$
- - (D5A) ${ }_{16}$
- - (2367) ${ }_{10}$
- $-(534)_{10}$

Q. 2 (20 points)

Prove the following identities using Boolean algebraic manipulations:
a. $x^{\prime} y^{\prime}+x y+x^{\prime} y=x^{\prime}+y$
b. $\quad x y+x \prime z+y \prime z=x y+z$
c. $x^{\prime} y z+x^{\prime} y z '+x y^{\prime} z^{\prime}+x y^{\prime} z=x \prime y+x y \prime$
d. $x^{\prime} y+x^{\prime} z+x^{\prime} y^{\prime}+x^{\prime} y z^{\prime}=x^{\prime}$

Q. 3 (20 points)

Draw schematics for the following functions in terms of AND, OR, and inverter gates.

- $x(y+z)$
- $x y+x z$
- $\overline{x(y+z)}$
- $\bar{x}+\overline{y z}$
- $x(y+z t)$

Q. 4 (20 points)

Simplify the following Boolean functions

- $F(x, y, z)=m(0,1,5,7)$
- $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{m}(0,2,3,4,6,8,9, \mathrm{~B}, \mathrm{E}, \mathrm{F})$
- $F(x, y, z, t)=M(1,2,4,5,8,9, A, B)$
- $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{M}(0,1,3,4,6, \mathrm{~A}, \mathrm{C}, \mathrm{D})$

Q. 5 (20 points)

Consider the following function:

$$
F(A, B, C, D)=\left(A+C^{\prime}\right)(A+D)\left(A^{\prime}+B\right)\left(B^{\prime}+D^{\prime}\right)
$$

a. Write the function as a sum of minterms. Specify the minterms (using m_{i} notation)
b. Write the function as a product of maxterms. Specify the maxterms (using M_{i} notation)
c. Simplify the function.
d. Write the simplified function as a reduced sum of products

