Q1. Perform the following calculations to the correct number of significant figures.
(4.562× 3.99870)
(452.6755-452.33)
A) 53
B) 52.8
C) 52.80
D) 52.799
E) 52.7990

Q2. The boiling point of helium is 4 K . An equivalent temperature would be,
A) $-452^{\circ} \mathrm{F}$
B) $-269^{\circ} \mathrm{F}$
C) $+531^{\circ} \mathrm{F}$
D) $-180^{\circ} \mathrm{F}$
E) $-212^{\circ} \mathrm{F}$

Q3. Which one of the following statements is true?
A) The number of electrons and protons are equal in the neutral atom.
B) All particles in the nucleus of an atom is charged.
C) The number of neutrons must be equal to number of electrons in the neutral atom.
D) The mass of the nucleus is a very small fraction of the mass of the entire atom.
E) The atom is best described as a uniform sphere of matter in which electrons are embeded.

Q4. Two elements, A and B , combine to form two binary compounds. In the first compound, 14.0 g of A combines with 3.00 g of B . In the second compound, 7.00 g of A combines with 4.50 g of B . If the formula of the second compound is $A B$ then the formula of the first compound would be,
A) $A_{3} B$
B) AB_{3}
C) $\mathrm{A}_{2} \mathrm{~B}_{3}$
D) $\mathrm{A}_{2} \mathrm{~B}$
E) AB_{2}

Q5. The correct name for $\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}$ is,
A) Titanium(IV) nitrate.
B) Titanium(VI) nitrite.
C) Titanium nitrate
D) Titanium tetranitrate
E) Titanium nitrite.

Q6. The atomic mass of an element X is 51.7 amu . If the element X consists of two isotopes of mass 50 amu and 52 amu , what is the natural abundance of the lighter isotope?
A) 15%
B) 100%
C) 45%
D) 85%
E) 55%

Q7. The copper sulfate crystal has the molecular formula, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. How many oxygen atoms are there in a 1.00 g sample of crystalline copper sulfate?
A) 2.17×10^{22} atoms
B) 9.65×10^{21} atoms
C) 1.21×10^{22} atoms
D) 1.62×10^{22} atoms
E) 8.25×10^{21} atoms

Q8. Determine the empirical formula for a compound that contains only C, H, and N , given the following composition by mass: $58.82 \% \mathrm{C}$ and $27.45 \% \mathrm{~N}$.
A) $\mathrm{C}_{5} \mathrm{~N}_{2} \mathrm{H}_{14}$
B) $\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}$
C) $\mathrm{C}_{5} \mathrm{NH}_{7}$
D) $\mathrm{C}_{4} \mathrm{NH}_{10}$
E) $\mathrm{C}_{4} \mathrm{NH}_{7}$

Q9. If $36.8 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$ are burned in the presence of 112 g oxygen, according to the equation,

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

How many grams of $\mathrm{C}_{2} \mathrm{H}_{6}$ will be left after the burn?
A) 6.73 g
B) 30.1 g
C) 4.37 g
D) 2.44 g
E) 8.23 g

Q10. The reaction,

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}),
$$

has a percent yield of 85%. How many grams of NH_{3} are produced from $12.0 \mathrm{~g} \mathrm{~N}_{2}$ when H_{2} is presence in excess?
A) 12.4 g
B) 14.6 g
C) 3.13 g
D) 7.30 g
E) 24.8 g

Q11. When the following oxidation-reduction reaction that occurs in basic solution is balanced,
$\mathrm{MnO}_{4}{ }^{-}+\mathrm{ClO}_{2}{ }^{-} \rightarrow \mathrm{MnO}_{2}+\mathrm{ClO}_{4}{ }^{-}$
the sum of all coefficients of the products and reactants is,
A) 20
B) 15
C) 24
D) 25
E) 30

Q12. Calculate the concentration of potassium ions, K^{+}, in a $500 . \mathrm{mL}$ solution containing $2.00 \mathrm{~g} \mathrm{~K}_{3} \mathrm{PO}_{4}$.
A) $5.65 \times 10^{-2} \mathrm{M}$
A) $3.77 \times 10^{-5} \mathrm{M}$
C) $1.88 \times 10^{-2} \mathrm{M}$
D) $2.83 \times 10^{-2} \mathrm{M}$
E) $1.41 \times 10^{-2} \mathrm{M}$

Q13. When aqueous solutions of CaCl_{2} and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ are mixed, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ precipitates. Calculate the mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ formed when 2.00 liters of $1.00 \mathrm{M} \mathrm{CaCl}_{2}$ and 3.00 liters of $0.500 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ are mixed.
A) 207 g
B) 232 g
C) 0.667 g
D) 0.750 g
E) 610 g

Sec\# 4-7
Grade\# 70

Q14. An aqueous solution containing 2.20 g sample of an unknown acid which has one acidic proton per molecule required 25.0 mL of 0.500 M NaOH to react completely. Calculate the molar mass of the acid.
A) $176 \mathrm{~g} / \mathrm{mol}$
B) $27.5 \mathrm{~g} / \mathrm{mol}$
C) $55.0 \mathrm{~g} / \mathrm{mol}$
D) $89.0 \mathrm{~g} / \mathrm{mol}$
E) $124 \mathrm{~g} / \mathrm{mol}$

Q15. Consider the following oxidation-reduction reaction,

$$
\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NO}_{2}^{-}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{AlO}_{2}^{-}(\mathrm{aq}) .
$$

Which of the following statements is correct?
A) Al is a reducing agent.
B) NO_{2}^{-}is a reducing agent.
C) $\mathrm{H}_{2} \mathrm{O}$ is an oxidizing agent.
D) OH^{-}is a reducing agent.
E) The oxidation state of N in NO_{2}^{-}is -3 .

Q16. If a 0.35 mole of argon gas at $13^{\circ} \mathrm{C}$ and 568 torr is heated to $56^{\circ} \mathrm{C}$ and a pressure of 897 torr, the change in its volume is,
A) -3 L
B) 1 L
C) -2 L
D) 5 L
E) -4 L

Q17. Which of the following statement(s) is (are) true.
I At constant temperature, the lighter the gas molecule, the faster the average velocity of the gas.
II At constant temperature and volume, as more gas is added to a container, the total pressure increases.
III At constant volume and moles, the kinetic theory predicts that pressure of gas is inversely proportional to temperature.
A) I and II
B) I and III
C) I only
D) II only
E) III only

Q18. An unknown diatomic gas has a density of $3.164 \mathrm{~g} / \mathrm{L}$ at STP. This gas is,
A) Cl_{2}
B) Br_{2}
C) H_{2}
D) O_{2}
E) N_{2}

Q19. A 2.00 L sample of O_{2} gas was collected over water at a total pressure of 785 torr and $25.0^{\circ} \mathrm{C}$. When the O_{2} gas was dried (water vapor removed), the gas had a volume of 1.94 L at $25.0^{\circ} \mathrm{C}$ and 785 torr. Calculate the vapor pressure of water at $25.0^{\circ} \mathrm{C}$.
A) 23.5 torr
B) 75.2 torr
C) 50.4 torr
D) 785 torr
E) 100 torr

Q20. The root mean square velocity of CH_{4} at 273 K is,
A) $652 \mathrm{~m} / \mathrm{s}$
B) $50.1 \mathrm{~m} / \mathrm{s}$
C) $312 \mathrm{~m} / \mathrm{s}$
D) $11.1 \mathrm{~m} / \mathrm{s}$
E) $201 \mathrm{~m} / \mathrm{s}$

