Q1.
A 4.40-g piece of solid CO_{2} (dry ice) is allowed to sublime to CO_{2} (gas) in a balloon. The final volume of the balloon is 1.00 L at $300 . \mathrm{K}$. What is the pressure of the gas?
A) 2.46 atm
B) 246 atm
C) 0.122 atm
D) 122 atm
E) 4.67 atm

Q2.
Calculate the root mean square velocity for the O_{2} molecules in a sample of O_{2} gas at $25.0^{\circ} \mathrm{C}$.
A) $482 \mathrm{~m} / \mathrm{s}$
B) $2.32 \times 10^{5} \mathrm{~m} / \mathrm{s}$
C) $658 \times 10^{2} \mathrm{~m} / \mathrm{s}$
D) $853 \mathrm{~m} / \mathrm{s}$
E) $97.5 \mathrm{~m} / \mathrm{s}$

Q3.
What would happen to the average kinetic energy of the molecules of a gas sample if the temperature of the sample increased from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$?
A) It would increase.
B) It would double.
C) It would decrease.
D) It would become half its value.
E) It would remain the same.

Q4.

It is found that $250 . \mathrm{mL}$ of gas at STP has a mass of 1.00 g . What is the molar mass?
A) $89.7 \mathrm{~g} / \mathrm{mol}$
B) $28.0 \mathrm{~g} / \mathrm{mol}$
C) $14.0 \mathrm{~g} / \mathrm{mol}$
D) $22.4 \mathrm{~g} / \mathrm{mol}$
E) $11.2 \mathrm{~g} / \mathrm{mol}$

Q5.
A gas absorbs 72.2 J of heat and undergoes expansion from 1.00 to 2.50 liters against a pressure of 1.00 atm at constant temperature. What is the change in internal energy of the gas? $(1 \mathrm{~L} \mathrm{~atm}=101.3 \mathrm{~J})$
A) -79.8 J
B) +79.8 J
C) +224 J
D) -224 J
E) -101.3 J

Q6.
A 100.0 g copper calorimeter at a temperature of $15.0^{\circ} \mathrm{C}$ contains 200.0 g of $\mathrm{H}_{2} \mathrm{O}$ at $15^{\circ} \mathrm{C}$. A 540.0 g mass of titanium at a temperature of $100.0^{\circ} \mathrm{C}$ is plunged into the water. The temperature of water rises to $34.7^{\circ} \mathrm{C}$. What is the specific heat of titanium?
(Notes: specific heat of $\mathrm{Cu}=0.0930 \mathrm{~J} /{ }^{\circ} \mathrm{C} . \mathrm{g}$; specific heat of water $=4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C} . \mathrm{g}$)
A) $0.472 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
B) $183.2 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
C) $1.647 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
D) $0.093 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
E) $540.0 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Q7.
From the gaseous reactions,
$\frac{1}{2} \mathrm{H}_{2}+\mathrm{N}_{2}+\frac{5}{2} \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{NO}_{2} \quad \Delta \mathrm{H}=-101 \mathrm{~kJ}$

| $2 \mathrm{NH}+$ | H_{2} | \rightarrow | $\mathrm{~N}_{2} \mathrm{H}_{4}$ |
| :--- | :--- | :--- | :--- |$\Delta \mathrm{H}=-567 \mathrm{~kJ}$

calculate $\Delta \mathrm{H}$ for the following reaction,
$\mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{HNO}_{3}+2 \mathrm{NO}_{2}+2 \mathrm{NH}$
A) +388 kJ
B) -287 kJ
C) +590 kJ
D) +287 kJ
E) -388 kJ

Q8.
Find the wavelength in nanometers (nm) of the light that results from the electronic transition from level $n=3$ to level $n=2$ of an excited hydrogen atom.
$\left(\mathrm{R}_{\mathrm{H}}=2.178 \times 10^{-18} \mathrm{~J}\right)$
A) 656.7 nm
B) 432.5 nm
C) 222.5 nm
D) 832.5 nm
E) 121.5 nm

Q9.

Which quantum number determines the energy of an orbital?
A) The principal quantum number.
B) The angular momentum quantum number.
C) The magnetic quantum number.
D) The electron spin quantum number.
E) The energy of an orbital cannot be determined.

Q10.

A $1.00-\mathrm{L}$ gas sample at $100 .{ }^{\circ} \mathrm{C}$ and 600 . torr contains 50.0% of helium(He) and 50.0% of xenon (Xe) by mass. What is the partial pressure of the xenon gas?
A) 18 torr
B) 582 torr
C) 25 torr
D) 124 torr
E) 285 torr

Q11.
Which of the following atoms do not form stable isolated X^{-}ion?
A) Mg
B) C
C) O
D) F
E) Cl

Q12.
Arrange the following atoms in order of increasing size.
Si, F, Na, Sr, N
A) $\mathrm{F}<\mathrm{N}<\mathrm{Si}<\mathrm{Na}<\mathrm{Sr}$
B) $\mathrm{Sr}<\mathrm{Na}<\mathrm{Si}<\mathrm{N}<\mathrm{F}$
C) F $<\mathrm{N}<\mathrm{Na}<\mathrm{Si}<\mathrm{Sr}$
D) $\mathrm{F}<\mathrm{N}<\mathrm{Sr}<\mathrm{Si}<\mathrm{Na}$
E) $\mathrm{Si}<\mathrm{N}<\mathrm{F}<\mathrm{Na}<\mathrm{Sr}$

Q13.

The electron configuration for silver is,
A) $[\mathrm{Kr}] 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{10}$
B) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{9}$
C) $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14} 5 \mathrm{~d}^{3}$
D) $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{1}$
E) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{4}$

Q14.
Which of the following molecules has no dipole moment?
A) SO_{3}
B) NH_{3}
C) CHCl_{3}
D) HF
E) $\mathrm{H}_{2} \mathrm{O}$

Q15.
Arrange the following bonds in order of decreasing ionic character?
$\mathrm{N}-\mathrm{O}, \mathrm{Ca}-\mathrm{O}, \mathrm{C}-\mathrm{F}, \mathrm{Br}-\mathrm{Br}, \mathrm{K}-\mathrm{F}$
A) $\mathrm{K}-\mathrm{F}>\mathrm{Ca}-\mathrm{O}>\mathrm{C}-\mathrm{F}>\mathrm{N}-\mathrm{O}>\mathrm{Br}-\mathrm{Br}$
B) $\mathrm{K}-\mathrm{F}>\mathrm{Ca}-\mathrm{O}>\mathrm{N}-\mathrm{O}>\mathrm{C}-\mathrm{F}>\mathrm{Br}-\mathrm{Br}$
C) $\mathrm{Br}-\mathrm{Br}>\mathrm{K}-\mathrm{F}>\mathrm{Ca}-\mathrm{O}>\mathrm{N}-\mathrm{O}>\mathrm{C}-\mathrm{F}$
D) $\mathrm{Ca}-\mathrm{O}>\mathrm{N}-\mathrm{O}>\mathrm{C}-\mathrm{F}>\mathrm{Br}-\mathrm{Br}>\mathrm{K}-\mathrm{F}$
E) $\mathrm{Br}-\mathrm{Br}>\mathrm{N}-\mathrm{O}>\mathrm{C}-\mathrm{F}>\mathrm{Ca}-\mathrm{O}>\mathrm{K}-\mathrm{F}$

Q16.
Calculate $\Delta \mathrm{H}_{f}^{\circ}$ for potassium chloride.
$\mathrm{K}(\mathrm{s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{KCl}(\mathrm{s})$
Given that,

Lattice energy
Ionization energy for K
Electron affinity of Cl
Bond energy of Cl_{2}
Enthalpy of sublimation for K
-690. kJ/mol
$419 \mathrm{~kJ} / \mathrm{mol}$
-349 kJ/mol
$239 \mathrm{~kJ} / \mathrm{mol}$
$64 \mathrm{~kJ} / \mathrm{mol}$
A) $-437 \mathrm{~kJ} / \mathrm{mol}$
B) $+181 \mathrm{~kJ} / \mathrm{mol}$
C) $-109 \mathrm{~kJ} / \mathrm{mol}$
D) $+327 \mathrm{~kJ} / \mathrm{mol}$
E) $-289 \mathrm{~kJ} / \mathrm{mol}$

Q17.
Which of the following compounds has the most exothermic lattice energy?
A) $\mathrm{Al}_{2} \mathrm{O}_{3}$
B) CaSO_{4}
C) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D) KCl
E) LiF

Q18.
In the Lewis structure that obeys the octet rule for $\mathrm{PO}_{3}{ }^{3-}$ ion, the number lone pair(s) of electrons on the phosphorus atom is,
A) 1
B) 2
C) 0
D) 3
E) 4

Q19.
Which of the followings have a molecular structure of See-saw?
A) TeF_{4}
B) SiF_{4}
C) XeCl_{4}
D) CHCl_{3}
E) NH_{4}^{+}

Q20.
What is the formal charge for chlorine atom in $\mathrm{ClO}_{3}{ }^{-}$whose Lewis structure obeys the octet rule?
A) +2
B) -2
C) +1
D) -4
E) +3

