Q1.
The radius of the hydrogen nucleus is $1.0 \times 10^{-12} \mathrm{~cm}$ and its mass is $1.67 \times 10^{-24} \mathrm{~g}$. What is the density of the hydrogen nucleus in kg / L ?
(Volume of a sphere is $4 / 3 \pi r^{3}$ where r is a radius)
A) 4.0×10^{11}
B) 4.0×10^{9}
C) 3.8×10^{7}
D) 2.5×10^{12}
E) 5.2×10^{8}

Q2.
Which of the followings is a pure substance?
A) Water
B) Air
C) Soil
D) Gasoline
E) Wood

Q3.

Assume that the freezing point and melting point of mercury (Hg), which are $-39^{\circ} \mathrm{C}$ and $356^{\circ} \mathrm{C}$ respectively, are defined as $0^{\circ} \mathrm{A}$ and $200^{\circ} \mathrm{A}$ respectively. What is the equivalent of $0^{\circ} \mathrm{C}$ in ${ }^{\circ} \mathrm{A}$?
A) 20
B) 30
C) 35
D) 40
E) 25
Q4.
$40 \mathrm{Ca}^{2+}$ has
A) 20 protons, 20 neutrons, and 18 electrons.
B) 22 protons, 20 neutrons, and 20 electrons.
C) 20 protons, 22 neutrons, and 18 electrons.
D) 22 protons, 18 neutrons, and 18 electrons.
E) 20 protons, 20 neutrons, and 22 electrons.

Q5.
How many ions of Na^{+}are available in 77.4 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
A) 8.79×10^{23}
B) 4.40×10^{23}
C) 6.02×10^{23}
D) 1.20×10^{24}
E) 2.10×10^{24}

Q6.

Two elements R and Q, combine to form two binary compounds. In the first compound, 14.0 g of R combines with 3.00 g of Q . In the second compound, 7.00 g of R combines with 4.50 g of Q . If the formula of the second compound is RQ , what is the formula of the first compound?
A) $R_{3} Q$
B) $R_{2} Q$
C) $R Q_{2}$
D) $R Q_{3}$
E) $R_{2} Q_{3}$

Q7.

The name of the compound $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$.
A) Ammonium dihydrogen phosphate
B) Ammonium hydrogen phosphate
C) Ammonium phosphate
D) Tetraammonium dihydrogen phosphate
E) Tetraammonium hydrogen phosphate

Q8.

Natural rubidium has the average mass of 85.4678 and is composed of two isotopes ${ }^{85} \mathrm{Rb}(84.9117 \mathrm{amu})$ and ${ }^{87} \mathrm{Rb}(86.9220 \mathrm{amu})$. What is the relative abundance of isotope ${ }^{85} \mathrm{Rb}$?
A) 72.33%
B) 27.85%
C) 50.00%
D) 31.47%
E) 68.53%

Q9.

A given sample of xenon fluoride compound contains molecules of the type $\mathrm{XeF}_{\mathrm{n}}$ where n is a whole number, Given that $9.03 \mathrm{X} 10^{20}$ molecules of $\mathrm{XeF}_{\mathrm{n}}$ weighs 0.368 g. Determine the value for " n " in the formula.
A) 6
B) 5
C) 4
D) 3
E) 2

Q10.
An element X reacts with chlorine to form XCl_{2} and $\mathrm{XCl}_{4} . \mathrm{XCl}_{2}$ is converted to XCl_{4} by the equation,
$\mathrm{XCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{XCl}_{4}$.
Treatment of 10.00 g of XCl_{2} with excess chlorine forms $12.55 \mathrm{~g} \mathrm{XCl}_{4}$. Calculate the atomic mass of X .
A) 207.1
B) 125.4
C) 147.3
D) 186.7
E) 139.2

Q11.

Consider the following unbalanced reaction:
$\mathrm{P}_{4}(\mathrm{~s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{PF}_{3}(\mathrm{~g})$
What mass of F_{2} is needed to produce $1.20 \times 10^{2} \mathrm{~g}$ of PF_{3} if the reaction has a 78.1% yield?
A) $99.6 \mathrm{~g} \mathrm{~F}_{2}$
B) $77.8 \mathrm{~g} \mathrm{~F}_{2}$
C) $88.7 \mathrm{~g} \mathrm{~F}_{2}$
D) $72.3 \mathrm{~g} \mathrm{~F}_{2}$
E) $83.6 \mathrm{~g} \mathrm{~F}_{2}$

Q12.
Consider the following unbalanced reaction:
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
What masses of calcium sulfate will be produced from the reaction of 1.0 kg calcium phosphate with 980 g pure sulfuric acid?
A) 1.3 kg
B) 1.4 kg
C) 1.6 kg
D) 1.7 kg
E) 1.1 kg

Q13.

The compound adrenaline contains $56.79 \% \mathrm{C}, 6.56 \% \mathrm{H}, 28.37 \% \mathrm{O}$, and $8.28 \% \mathrm{~N}$ by mass. What is the empirical formula for adrenaline?
A) $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$
B) $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$
C) $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{2}$
D) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}$
E) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}$

Q14.
Which of the followings is a weak base?
A) NH_{3}
B) NaOH
C) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
D) KOH
E) HCl

Q15.

Which of the listed chlorides is insoluble in water at room temperature?
A) PbCl_{2}
B) BaCl_{2}
C) CaCl_{2}
D) MgCl_{2}
E) KCl

Sec\# Types of Chemical Reactions and Solution Stoichiometry - Precipitation Reactions
Grade\# 60
Q16.
Calculate the sodium ion $\left(\mathrm{Na}^{+}\right)$concentration when 70.0 mL of $3.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ is added to 30.0 mL of $1.0 \mathrm{M} \mathrm{NaHCO}_{3}(\mathrm{aq})$.
A) 4.5 M
B) 0.45 M
C) 0.03 M
D) 6.4 M
E) 8.3 M

Sec\# Types of Chemical Reactions and Solution Stoichiometry - The Composition of Solutions
Grade\# 60
Q17.
What mass of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ is required to precipitate all of the silver ions from 75.0 mL of a 0.100 M solution of AgNO_{3} ?
A) 0.608 g
B) 1.21 g
C) 2.43 g
D) 16.2 g
E) 7.85 g

Q18.
What volume of $0.0200 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is required to neutralize 35.00 mL of 0.0500 M HNO_{3} ?
A) 43.8 mL
B) 175 mL
C) 87.5 mL
D) 65.3 mL
E) 120 mL

Q19.

The oxidizing agent in the following oxidation-reduction reaction is,
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}$
A) MnO_{4}^{-}
B) $\mathrm{H}_{2} \mathrm{SO}_{3}$
C) Mn^{2+}
D) $\mathrm{SO}_{4}{ }^{2-}$
E) H^{+}

Q20.

When the following oxidation-reduction reaction that occurs in basic solution is balanced, the mole ratio of $\mathrm{S}^{2-}(\mathrm{aq})$ to $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is,
$\mathrm{MnO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{MnS}(\mathrm{s})+\mathrm{S}(\mathrm{s})$
A) $7 / 8$
B) $8 / 7$
C) $7 / 2$
D) $1 / 3$
E) $2 / 5$

