

Chapter 16

Spontaneity, Entropy, and Free Energy

Chapter 16 Preview

Spontaneity, Entropy, and Free Energy

Spontaneous Processes and Entropy

Second law of Thermodynamic, Entropy, Effect of temperature on spontaneity, Entropy change in Chemical reacdtion

Free Energy and Chemical Reaction

Dependence of Free energy on pressure

Free Energy and Equilibrium

The temperature dependence

Free Energy and Work

16.1 Spontaneous Processes and Entropy

- A waterfall runs downhill
- A lump of sugar dissolves in a cup of coffee
- At 1 abc

Does a decrease in enthalpy mean a reaction proceeds spontaneously?

Spontaneous reactions

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(I) \Delta H^0 = -890.4 \text{ kJ}$$

 $H^+(aq) + OH^-(aq) \longrightarrow H_2O(l) \quad \Delta H^0 \neq -56.2 \text{ kJ}$

 $H_2O(s) \longrightarrow H_2O(l) \Delta H^0 = 6.01 \text{ kJ}$

 $NH_4NO_3(s) \xrightarrow{H_2O} NH_4^+(aq) + NO_3^-(aq) \Delta H^0 = 25 \text{ kJ}$

If the change from initial to final results in an increase in randomness

$$S_f > S_i \qquad \Delta S > 0$$

For any substance, the solid state is more ordered than the liquid state and the liquid state is more ordered than gas state

Entropy			
	Arrangement	Micro	states
	I <i>W</i> = 1		1234
W = number of microst	ates	1 4	
$S = k \ln W$	W = 4	23	24
$\Delta S = S_f - S_i$		1 3 4 2	2 3 4 1
$\Delta S = k \ln \frac{W_f}{W_i}$	ſ	1 3	3 1
		2 4	4 2
$W_f > W_i$ then $\Delta S > C$	W = 6	1 2	2 1
$W_f < W_i$ then $\Delta S < C$			
	l	4 3	3 4

increase in entropy ($\Delta S > 0$)

How does the entropy of a system change for each of the following processes?

(a) Condensing water vapor

Randomness decreases

Entropy decreases ($\Delta S < 0$)

(b) Forming sucrose crystals from a supersaturated solution

Randomness decreasesEntropy decreases ($\Delta S < 0$)

(c) Heating hydrogen gas from 60°C to 80°C

Randomness increases

Entropy increases ($\Delta S > 0$)

(d) Subliming dry ice

Randomness increases

Entropy increases ($\Delta S > 0$)

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.

energy, enthalpy, pressure, volume, temperature, entropy

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

Standard Entropy Values (<i>S°</i>) for Some Substances at 25°C		
Substance	<i>S</i> ° (J/K ∙ mol)	BLE
$H_2O(l)$	69.9	F
$H_2O(g)$	188.7	
$\operatorname{Br}_2(l)$	152.3	
$\operatorname{Br}_2(g)$	245.3	
$I_2(s)$	116.7	
$I_2(g)$	260.6	
C(diamond)	2.4	
C(graphite)	5.69	
CH ₄ (methane)	186.2	
C_2H_6 (ethane)	229.5	
$\operatorname{He}(g)$	126.1	
Ne(g)	146.2	

First Law of Thermodynamics

Energy can be converted from one form to another but energy cannot be created or destroyed.

Second Law of Thermodynamics

In any spontaneous process there is alaways an increase in the entropy of the **universe** and remains unchanged in an equilibrium process.

Spontaneous process:

Equilibrium process:

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$$

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} = 0$$

16.3 The Effect of Temperature on Spontaneity

Entropy Changes in the Surroundings (ΔS_{surr})

- 1. The sign of ΔS_{surr} depends on the direction of heat flow.
- 2. The magnitude of ΔS_{surr} depends on the temperature

16.4 Gibbs Free Energy

Spontaneous process:

Equilibrium process:

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} > 0$$

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} = 0$$

For a constant-temperature process:

Gibbs free energy (G)

 $\Delta G = \Delta H_{sys} - T\Delta S_{sys}$

Factors Affecting the Sign of ΔG in the Relationship $\Delta G = \Delta H - T \Delta S$

ΔΗ	ΔS	ΔG	Example
+	+	Reaction proceeds spontaneously at high temperatures. At low temperatures, reaction is spontaneous in the reverse direction.	$2 \text{HgO}(s) \longrightarrow 2 \text{Hg}(l) + \text{O}_2(g)$
+	-	ΔG is always positive. Reaction is spontaneous in the reverse direction at all temperatures.	$3O_2(g) \longrightarrow 2O_3(g)$
-	+	ΔG is always negative. Reaction proceeds spontaneously at all temperatures.	$2H_2O_2(l) \longrightarrow 2H_2O(l) + O_2(g)$
-	-	Reaction proceeds spontaneously at low temperatures. At high temperatures, the reverse reaction becomes spontaneous.	$NH_3(g) + HCl(g) \longrightarrow NH_4Cl(s)$

16.5 Entropy Changes in Chemical Reaction (ΔS_{sys})

The standard entropy of reaction (ΔS^0_{rxn}) is the entropy change for a reaction carried out at 1 atm and 25°C.

 $aA + bB \longrightarrow cC + dD$

 $\Delta S_{rxn}^{0} = [cS^{0}(C) + dS^{0}(D)] - [aS^{0}(A) + bS^{0}(B)]$

 $\Delta S_{rxn}^0 = \Sigma n S^0$ (products) - $\Sigma m S^0$ (reactants)

• What is the standard entropy change for the following reaction at 25°C? 2CO $(g) + O_2(g) \longrightarrow 2CO_2(g)$

 $S^{0}(CO) = 197.9 \text{ J/K-mol} S^{0}(CO_{2}) = 213.6 \text{ J/K-mol} S^{0}(O_{2}) = 205.0 \text{ J/K-mol}$

 $\Delta S_{rxn}^{0} = 2 \times S^{0}(CO_{2}) - [2 \times S^{0}(CO) + S^{0}(O_{2})]$

 $\Delta S_{rxn}^0 = 427.2 - [395.8 + 205.0] = -173.6 \text{ J/K-mol}$

Entropy Changes in the System (ΔS_{sys})

When gases are produced (or consumed)

- If a reaction produces more gas molecules than it consumes, $\Delta S^0 > 0$.
- If the total number of gas molecules diminishes, $\Delta S^0 < 0$.
- If there is no net change in the total number of gas molecules, then ΔS^0 may be positive or negative BUT ΔS^0 will be a small number.

What is the sign of the entropy change for the following reaction? $2Zn(s) + O_2(g) \longrightarrow 2ZnO(s)$

 \int The total number of gas molecules goes down, ΔS is negative.

Predict whether the entropy change of the system in each of the following reactions is positive or negative.

- (a) $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$
- (b) $NH_4Cl(s) \longrightarrow NH_3(g) + HCl(g)$
- (c) $H_2(g) + Br_2(g) \longrightarrow 2HBr(g)$
- Solution (a) Two reactant molecules combine to form one product molecule. Even though H_2O is a more complex molecule than either H_2 and O_2 , the fact that there is a net decrease of one molecule and gases are converted to liquid ensures that the number of microstates will be diminished and hence ΔS° is negative.
- (b) A solid is converted to two gaseous products. Therefore, ΔS° is positive.
- (c) The same number of molecules is involved in the reactants as in the product. Furthermore, all molecules are diatomic and therefore of similar complexity. As a result, we cannot predict the sign of ΔS° , but we know that the change must be quite small in magnitude.

16.6 Free Energy in Chemical Reaction (ΔG_{sys})

The standard free-energy of reaction (ΔG^0) is the freeenergy change for a reaction when it occurs under standardstate conditions.

 $aA + bB \longrightarrow cC + dD$

 $\Delta G_{rxn}^{0} = \left[c \Delta G_{f}^{0} \left(C \right) + d \Delta G_{f}^{0} \left(D \right) \right] - \left[a \Delta G_{f}^{0} \left(A \right) + b \Delta G_{f}^{0} \left(B \right) \right]$

 $\Delta G_{rxn}^0 = \Sigma n \Delta G_f^0$ (products) - $\Sigma m \Delta G_f^0$ (reactants)

Standard free energy of formation (ΔG_f^0) is the free-energy change that occurs when **1 mole** of the compound is formed from its elements in their standard states.

 ΔG^0 of any element in its stable form is zero.

Conventions for Standard States		
State of Matter	Standard State	
Gas	1 atm pressure	
Liquid	Pure liquid	
Solid	Pure solid	
Elements*	$\Delta G_{ m f}^{ m o}=0$	
Solution	1 molar con- centration	

* The most stable allotropic form at 25°C and 1 atm.

What is the standard free-energy change for the following reaction at 25 °C?

$$2C_{6}H_{6}(I) + 15O_{2}(g) \longrightarrow 12CO_{2}(g) + 6H_{2}O(I)$$

 $\Delta G_{rxn}^0 = \Sigma n \Delta G_f^0$ (products) - $\Sigma m \Delta G_f^0$ (reactants)

 $\Delta G_{rxn}^{0} = [12\Delta G_{f}^{0} (CO_{2}) + 6\Delta G_{f}^{0} (H_{2}O)] - [2\Delta G_{f}^{0} (C_{6}H_{6})]$

 $\Delta G_{rxn}^0 = [12x-394.4 + 6x-237.2] - [2x124.5] = -6405 \text{ kJ}$

> Is the reaction spontaneous at 25 °C?

 $\Delta G^0 = -6405 \text{ kJ} < 0$

spontaneous

16.7 Dependence of ΔG_{rxn} on Pressure

Temperature and Spontaneity of Chemical Reactions

 $CaCO_3 (s) \longrightarrow CaO (s) + CO_2 (g)$

$$\Delta H^0 = 177.8 \text{ kJ}$$

$$\Delta S^0 = 160.5 \text{ J/K}$$

 $\Delta G^{0} = \Delta H^{0} - T \Delta S^{0}$

 $\Delta G^{0} = 0$ at 835 °C

CO₂ Equilibrium Pressure

Special Cases of (ΔG_{rxn})

Gibbs Free Energy and Phase Transitions

$$\Delta G^{0} = 0 = \Delta H^{0} - T\Delta S^{0}$$

$$H_{2}O(I) \rightleftharpoons H_{2}O(g)$$

$$\Delta S = \frac{\Delta H}{T} = \frac{40.79 \text{ kJ}}{373 \text{ K}}$$

$$= 109 \text{ J/K}$$
Rate of evaporation prime prima prime prime prima prime prime prima p

The molar heats of fusion and vaporization of benzene are 10.9 kJ/mol and 31.0 kJ/mol, respectively. Calculate the entropy changes for the solid \rightarrow liquid and liquid \rightarrow vapor transitions for benzene. At 1 atm pressure, benzene melts at 5.5°C and boils at 80.1°C.

Solution The entropy change for melting 1 mole of benzene at 5.5°C is

$$\Delta S_{\text{fus}} = \frac{\Delta H_{\text{fus}}}{\Delta T_{f}}$$
$$= \frac{(10.9 \text{ kJ/mol})(1000 \text{ J/1 kJ})}{(5.5 + 273) \text{ K}}$$
$$= 39.1 \text{ J/K} \cdot \text{mol}$$

Similarly, the entropy change for boiling 1 mole of benzene at 80.1°C is

$$\Delta S_{\rm vap} = \frac{\Delta H_{\rm vap}}{T_{\rm bp}} \\ = \frac{(31.0 \text{ kJ/mol})(1000 \text{ J/1 kJ})}{(80.1 + 273) \text{ K}} \\ = 87.8 \text{ J/K} \cdot \text{mol}$$

Check Because vaporization creates more microstates than the melting process, $\Delta S_{\text{vap}} > \Delta S_{\text{fus}}$.

16.8 Free Energy and Chemical Equilibrium

 $\Delta G = \Delta G^{o} + RT \ln Q$

R is the gas constant (8.314 J/K•mol)

T is the absolute temperature (K)

Q is the reaction quotient

Relation Between ΔG° and K as Predicted by the Equation $\Delta G^{\circ} = -RT \ln K$				
κ	In <i>K</i>	ΔG°	Comments	
> 1	Positive	Negative	Products are favored over reactants at equilibrium.	
= 1	0	0	Products and reactants are equally favored at equilibrium.	
< 1	Negative	Positive	Reactants are favored over products at equilibrium.	

the solubility product of silver chloride at 25°C (1.6 \times 10⁻¹⁰), calculate ΔG° for the process

$$\operatorname{AgCl}(s) \Longrightarrow \operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq)$$

Solution The solubility equilibrium for AgCl is

$$\operatorname{AgCl}(s) \Longrightarrow \operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq)$$
$$K_{\rm sp} = [\operatorname{Ag}^+][\operatorname{Cl}^-] = 1.6 \times 10^{-10}$$

Using Equation (18.14) we obtain

$$\Delta G^{\circ} = -(8.314 \text{ J/K} \cdot \text{mol})(298 \text{ K}) \ln (1.6 \times 10^{-10})$$

= 5.6 × 10⁴ J/mol
= 56 kJ/mol

Check The large, positive ΔG° indicates that AgCl is slightly soluble and that the equilibrium lies mostly to the left.

Ex 18.8

The equilibrium constant (K_P) for the reaction

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

Solution Equation (18.13) can be written as

$$\Delta G = \Delta G^{\circ} + RT \ln Q_{P}$$

= $\Delta G^{\circ} + RT \ln \frac{P_{NO_{0}}^{2}}{P_{N_{0}O_{0}}}$
= $5.40 \times 10^{3} \text{ J/mol} + (8.314 \text{ J/K} \cdot \text{mol})(298 \text{ K}) \times \ln \frac{(0.122)^{2}}{0.453}$
= $5.40 \times 10^{3} \text{ J/mol} - 8.46 \times 10^{3} \text{ J/mol}$
= $-3.06 \times 10^{3} \text{ J/mol} = -3.06 \text{ kJ/mol}$

Because $\Delta G < 0$, the net reaction proceeds from left to right to reach equilibrium. Check Note that although $\Delta G^{\circ} > 0$, the reaction can be made to favor product formation initially by having a small concentration (pressure) of the product compared to that of the reactant. Confirm the prediction by showing that $Q_P < K_P$.

Chemistry In Action: The Efficiency of Heat Engines

Chemistry In Action: The Efficiency of Heat Engines

Structure of ATP and ADP in Ionized Forms

Chemistry In Action: The Efficiency of Heat Engines

Chemistry In Action: The Thermodynamics of a Rubber Band

 $T \varDelta S = \varDelta H - \varDelta G$

High Entropy

Low Entropy

Third Law of Thermodynamics

The entropy of a perfect crystalline substance is zero at the absolute zero of temperature.

