Chapter 21

Chapter 21 Preview Transition Metals and Coor. Chem.

The Transition Metals: A survey

General Properties, Electronic configuration, Oxidation states, Standard reduction potential, the 4th and 5th transition series

The First-Row Transition Metals

Coordination compounds, coordination numbers, ligands, nomenclature, structural and stereo-isomerism

Bonding in Complex Ions

Localized electron Model, Crystal field model, octahedral complexes and others

Biologic Importance and Metallurgy

Complexes, Iron and steel production, Heat treatment of steel

Introduction

- Transition metals (TMs) have many uses in our life: Iron, copper, titanium, silver, chromium, magnesium, Platinum...
- About 60 strategic and critical minerals are controlled by U. S. Government as they play a vital role in its economy and defense

TABLE 21.1	Some Transition Metals Important to the U.S. E	conomy and Defense
Metal	Uses	Percentage Imported
Chromium	Stainless steel (especially for parts exposed to corrosive gases and high temperatures)	~91%
Cobalt	High-temperature alloys in jet engines, magnets, catalysts, drill bits	~93%
Manganese	Steelmaking	~97%
Platinum and	Catalysts	~87%

- Transition metal complex of iron provide for the transport and storage of oxygen
- Zinc is found in more than 150 biomolecules in humans ...

21.1 The Transition Metals: A Survey

- TMs show great similarities within a given period as well as within a given vertical groups.
- Inner d- and f-electrons cannot participate as easily in bonding as can s- and p-electrons.
- Ag is the best electrical and thermal conductor and copper the best second, thus copper is wide used in electrical systems and home facilities....others
- Their cations are often complex ions, where the ion is surrounded by a certain number as ligands.

21.1 The Transition Metals: A Survey

- Half- and complete- filled rule, see Cr and Cu electronic configuration is applied to first raw TMs mainly.
- Ionization electrons firstly takes place at the outer shell electrons, then the inner (n-1)dorbitals to produce different oxidations states
- The common oxidation states of TMs is 2+ and the IE increases from Left-to-Right
- All metals except Cu can reduce H+ ions to hydrogen gas that increases from Left-to-Right
- 4d- and 5d-TMs are remarkably similar in size and used in special applications.

Electron Configurati	ons and C	Other Prop	perties of	the First-	Row Tran	sition Met	als			Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu
	Sc	ті	v	Cr	Mn	Fe	Со	Ni	Cu									
Electron configuration		2 2			2.5	2 6	2 7	2 %	1 10					+7				
M M ²⁺	$4s^23d^1$	$4s^2 3d^2$	$4s^2 3d^3$	$4s^{1}3d^{2}$	$4s^2 3d^3$	$4s^2 3d^6$	$4s^2 3d'$	$4s^2 3d^8$	$4s^{1}3d^{10}$									
M M ³⁺	[Ar]	$3d^1$	$3d^2$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	$3d^8$				+6	+6	+6			
Electronegativity	1.3	1.5	1.6	1.6	1.5	1.8	1.9	1.9	1.9									
Ionization energy												+5	+5	+5	+5			
First	631	658	650	652	717	759	760	736	745									
Second	1235	1309	1413	1591	1509	1561	1645	1751	1958		+4	+4	+4	+4	+4	+4		
Third	2389	2650	2828	2986	3250	2956	3231	3393	3578	_								
Radius (pm)										13	13	+3	12	13	12	13	13	+3
M	162	147	134	130	135	126	125	124	128	+5	+5	73	τJ	+3	- + 5	+5	+3	+5
M ²⁺		90	88	85	80	77	75	69	72	1						-		
M	81	77	74	64	66	60	64	_	_		+2	+2	+2	+2	+2	+2	+2	+2
Standard reduction																		
potential (V)*	-2.08	-1.63	-1.2	-0.74	-1.18	-0.44	-0.28	-0.25	0.34									
The half-reaction is $M^{2+}(aq) + 3$	$(\text{most stable oxidation numbers are shown in red})^{+1}$																	

21. 2 The First-row Transition Metals

- Sc is a rare element and not widely used but found in some electronics
- Ti is widely distributed in the crust (0.6%) and is excellent structural materials, e.g., jet engines and pumps. It is used in different forms, e.g., TiO2, TiCl4, ...
- V is also widely spread (0.02%) and is mostly used in alloys and exists in different oxidation states.
- Cr is relatively rare and it is very important industrial materials, e.g., steel plating,.. Also exists in different oxidation states.
- Mn is abundant (0.1%) and used as essential materials of hard steel used for rock crushers
- Fe is the most abundant (4.7%) and most important to our civilization.
- Co...., Ni...., Cu...., Zn.....

TABLE 21.4Oxidation Statesand Species for Vanadium inAqueous Solution			
Oxidation State of Vanadium	Species in Aqueous Solution		
+5	VO_2^+ (yellow)		
+4	VO^{2+} (blue)		
+3	$V^{3+}(aq)$ (blue-green)		
+2	$V^{2+}(aa)$ (violet)		

TABLE 21.5 Compounds	Typical Chromium
Oxidation State of Chromium	Examples of Compounds (X = halogen)
+2	CrX ₂
+3	CrX ₃ Cr ₂ O ₃ (green) Cr(OH) ₃ (blue-green)
+6	K ₂ Cr ₂ O ₇ (orange) Na ₂ CrO ₄ (yellow) CrO ₃ (red)

TABLE 21.6 Some Compounds of Manganese in Its Most Common Oxidation States					
Oxidation State of Manganese	Examples of Compounds				
+2	Mn(OH) ₂ (pink) MnS (salmon) MnSO ₄ (reddish) MnCl ₂ (pink)	+3			
+4 +7	MnO_2 (dark brown) $KMnO_4$ (purple)	+2, +3 (mixture			

TABLE 21.7 of Iron	Typical Compounds
Oxidation State of Iron	Examples of Compounds
+2	FeO (black)
	FeS (brownish
	black)
	FeSO ₄ · 7H ₂ O
	(green)
	K ₄ Fe(CN) ₆
	(yellow)
+3	FeCl ₃ (brownish
	black)
	Fe ₂ O ₃ (reddish
	brown)
	$K_3Fe(CN)_6$ (red)
	Fe(SCN) ₃ (red)
+2, +3	Fe ₃ O ₄ (black)
(mixture)	KFe[Fe(CN) ₆]
	(deep blue,
	"Prussian blue")

Scandium

Titanium

Vanadium

Chromium

Manganese

Iron

Cobalt

Nickel

Copper

21.3 Coordination Compounds

 NH_3

NH₃

ICEO!

A *coordination compound* typically consists of a complex ion and a counter ion.

A *complex ion* contains a central metal cation bonded to one or more molecules or ions. (NH_3)

The molecules or ions that surround the metal in a complex ion are called *ligands*.

A ligand has **at least one** unshared pair of valence electrons

21.3 Coordination Compounds

The atom in a ligand that is bound directly to the metal atom is

the *donor atom*.

The number of donor atoms surrounding the central metal atom in a complex ion is the *coordination number*.

Ligands with:

one donor atommonodentate H_2O , NH_3 , CI^- two donor atomsbidentateethylenediaminethree or more donor atomspolydentateEDTA

Bidentate and polydentate ligands are called *chelating agents*

<u>M</u> +	Coordination Numbers	M ²⁺	Coordination Numbers	M ³⁺	Coordination Numbers
Cu ⁺	2, 4	Mn ²⁺	4, 6	Sc ³⁺	6
Ag^+	2	Fe ²⁺	6	Cr^{3+}	6
Au^+	2, 4	Co^{2+}	4, 6	Co ³⁺	6
		Ni ²⁺	4, 6		
		Cu^{2+}	4, 6	Au ³⁺	4
		Zn^{2+}	4, 6		

OH⁻ has charge of -1 K⁺ has charge of +1 ? Au + 1 + 4x(-1) = 0

Au = +3

 NO_3^{-} has charge of -1

NH₃ has no charge

? Cr + 6x(0) + 3x(-1) = 0

Cr = +3

QUESTION

Ethylenediamine (en) is a bidentate ligand. What is the coordination number of cobalt in $[Co(en)_2Cl_2]Cl_2$

four
five
five
seven
seven
eight
six

Species found outside of the brackets are not directly bonded to the metal ion.

Naming Coordination Compounds $[Cr(H_2O)_4Cl_2]Cl$

- The cation is named before the anion.
- Within a complex ion, the ligands are named first **in alphabetical order** and the metal atom is named last.
- The names of anionic ligands end with the letter *o*. Neutral ligands are usually called by the name of the molecule. The exceptions are H₂O (aquo), CO (carbonyl), and NH₃ (ammine).
- When several ligands of a particular kind are present, the Greek prefixes *di-*, *tri-*, *tetra-*, *penta-*, and *hexa-* are used to indicate the number. If the ligand contains a Greek prefix, use the prefixes *bis*, *tris*, and *tetrakis* to indicate the number.
- The oxidation number of the metal is written in Roman numerals following the name of the metal.
- If the complex is an anion, its name ends in *-ate*.

Names of Anions **Containing Metal Atoms**

Name of Metal in Anionic

Complex

Common Names

Names of	Common	Ligands in	Coordination	Compounds
Numes of	Common	Liganus in	Coordination	compounds

Aluminum	Aluminate
Chromium	Chromate
Cobalt	Cobaltate
Copper	Cuprate
Gold	Aurate
Iron	Ferrate
Lead	Plumbate
Manganese	Manganate
Molybdenum	Molybdate
Nickel	Nickelate
Silver	Argentate
Tin	Stannate
Tungsten	Tungstate
Zinc	Zincate

Metal

Ligand
Bromide, Br ⁻
Chloride, Cl ⁻
Cyanide, CN ⁻
Hydroxide, OH ⁻
Oxide, O^{2-}
Carbonate, CO_3^{2-}
Nitrite, NO_2^-
Oxalate, $C_2 O_4^{2-}$
Ammonia, NH ₃
Carbon monoxide, CO
Water, H ₂ O
Ethylenediamine
Ethylenediaminetetraacetate

Name of Ligand in Coordination Compound
Bromo
Chloro
Cyano
Hydroxo
Oxo
Carbonato
Nitro
Oxalato
Ammine
Carbonyl
Aquo
Ethylenediamine
Ethylenediaminetetraacetato

QUESTIONS

What is the systematic name of $[Cr(H_2O)_4CI_2]CI$?

tetraaquodichlorochromium(III) chloride

Write the formula of tris(ethylenediamine)cobalt(II) sulfate $[Co(en)_3]SO_4$

21.4 Isomerism

Two or more species have the same formula but different properties are called *isomers*.

Stereoisomers are compounds that are made up of the same types and numbers of atoms bonded together in the same sequence but with different spatial arrangements.

Geometric isomers are stereoisomers that cannot be interconverted without breaking a chemical bond.

21.4 Isomerism

Two or more species have the same formula but different properties are called *isomers*.

21.4 Isomerism

Optical isomers are nonsuperimposable mirror images.

21.5 Bonding in Complex Ions: The localized Electron Model

Same model used for the formation os the hybrid atomic orbital using VSEPR rule however:

- 1. It cannot account for the square planar complex
- 2. The interaction beteen metal ion and ligand can be viewed as a lewis acid-base

A Set of d2sp3 Hybrid Orbitals on Co³⁺ can Accept as an Electron Pair from each of Six NH₃ Ligands to Form the Co(NH₃)₆³⁺ Complex Ion

It is not generally used because it also cannot account for the magnetism

21.6 The crystal Field Model

The localized model cannot account for the complex properties because it did not indicated how the energies of d-orbitals are affected by complex ion formation.

The crystal field model focuses on the d-orbital energies, e.g., octahedral complexes

21.6 Crystal field Model

Orbital Diagrams for High-Spin and Low-Spin Octahedral Complexes

Energy

In a strong field Mn³⁺ has 3 electrons in three half-filled orbitals.

5) none of these

Strong field splitting indicates that the lowest three orbitals are filled before the seventh electron is placed in a higher orbital.

21.6 Crystal field Model

Figure 21.27 The Crystal Field Diagrams for Octahedral and Tetrahedral Complexes

Figure 21.28 a-b (a) The Crystal Field Diagram for a Square Planar Complex Oriented in the xy Plane with Ligands along the x and y Axes (b) The Crystal Field Diagram for a Linear Complex where the Ligands Lie along the z Axis

Figure 21.28 a-b (a) The Crystal Field Diagram for a Square Planar Complex Oriented in the xy Plane with Ligands along the x and y Axes (b) The Crystal Field Diagram for a Linear Complex where the Ligands Lie along the z Axis

21.7 Biologic Importance

Iron plays a central role in almost all living cells.

- Cytochromes are the basic unit in respiratory chain
- Cytochromes consists of iron-complex (heme) and protien
- Heme contains Fe²⁺ coordinated to porphyrin (tetradentate)
- Oxygen stored in a molecule called Myoglobin
- Understanding of biologic role of iron allows to explain the toxicities of CO and CN⁻

Porphine

21.8 Metallurgy and Iron and Steel Production

The major steps in metallurgy are:

- Mining
- Pretreatment of the ore
- Reduction to the free metal
- Purification of the metal (refining)
- Alloying

The Basic Oxygen Process for Steelmaking

The Blast Furnace used in the Production of Iron