DENSITY FUNCTIONAL CALCULATIONS OF VIBRATIONAL WAVENUMBERS AND DERIVED POTENTIAL ENERGY DISTRIBUTIONS FOR FLUORO- AND CHLOROCARBONYL KETENE

H. M. BADAWI *, W. FÖRNER AND A. AL-SAADI ¹
DEPARTMENT OF CHEMISTRY, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, DHAHRAN 31261, SAUDIA ARABIA

* Author to whom correspondence should be addressed.
¹ Taken in part from the thesis of A. Al-Saadi that was submitted in May 2000 to the Chemistry Department in partial fulfillment of the M.S. degree.
ABSTRACT

The structural stability and conformational behavior of fluorocarbonyl ketene and chlorocarbonyl ketene were investigated by utilizing ab initio calculations with the 6-311++G** basis set at the Density Functional (B3LYP) level. Both molecular systems were predicted to exist in the planar s-cis and s-trans conformations with a relatively high energy barrier. Full geometrical optimization was performed at the ground and transition states in the two systems. The vibrational frequencies were computed at the DFT-B3LYP/6-311++G** level and the calculated vibrational infrared and Raman spectra of the cis-trans mixtures of fluoro- and chlorocarbonyl ketene were plotted. Complete vibrational assignments were made on the basis of normal coordinate calculations for both stable conformers of the molecules.

Keywords: Vibrational spectra and assignments; Rotational barriers; Fluorocarbonyl ketene; Chlorocarbonyl ketene.