

Chapter 18

Entropy, Free Energy, and Equilibrium

Part II

Dr. Al-Saad

18 4

Spontaneity of a Process Considering Only the System

Starting from the 2nd law of thermodynamics for a spontaneous process:

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} > 0$$

Also, we have: $\Delta S_{\text{surr}} = -\Delta H_{\text{sys}} / T$

Substituting 2 into 1 gives:

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} - \frac{\Delta H_{\text{sys}}}{T} > 0$$

$$T \Delta S_{\text{univ}} = T \Delta S_{\text{sys}} - \Delta H_{\text{sys}} > 0$$

In terms of <u>only</u> the system:

$$\Delta H_{\rm sys} - T \Delta S_{\rm sys} < 0$$

At constant T and P, the **process is spontaneous** only when the change of entropy and enthalpy of the system is such that $\Delta H_{sys} - T \Delta S_{sys}$ is **less than zero**.

Dr. Al-Saad

Gibbs Free Energy

Gibbs free energy (or simply free energy) is another thermodynamic quantity and is defined as:

$$G = H - TS$$

The change in Gibbs free energy for a *system* at constant temperature is:

$$\Delta G = \Delta H - T \Delta S$$

Getting back to equation ③, we have for a *spontaneous* process:

$$\Delta G = \Delta H - T \Delta S < 0$$

- o $\Delta G < 0$; the forward reaction is spontaneous.
- \circ $\Delta G > 0$; the forward reaction is nonspontaneous.
- \circ $\Delta G = 0$; the reaction is at equilibrium.

Dr. Al-Saad

3

18 4

Gibbs Free Energy

- Free energy can be defined as the energy available to do work. Thus, if a particular process is accompanied by a release of usable energy (ΔG is negative), this fact guarantees that it is spontaneous, and no need to consider what happens to the rest of the universe.
- Here are few examples at 25°C:

$$NH_3(g) + HCI(g) \rightarrow NH_4CI(s)$$

$$\Delta G = -91.1 \text{ kJ/mol}$$

spontaneous

$${}^{1/2}N_{2}(g) + O_{2}(g) \rightarrow NO_{2}(g)$$

$$\Delta G = + 51.8 \text{ kJ/mol}$$

nonspontaneous

Dr. Al-Saadi

Predicting the Sign of ΔG

• The sign of ΔG can be predicted from knowing the sign of ΔH and ΔS for a reaction.

$$\Delta G = \Delta H - T \Delta S < 0$$

When ΔH is	And ΔS is	∆G Will Be	And the Process Is
Negative	Positive	Negative	Always spontaneous
Positive	Negative	Positive	Always nonspontaneous
Negative	Negative	Negative when $T\Delta S < \Delta H$ Positive when $T\Delta S > \Delta H$	Spontaneous at low T Nonspontaneous at high T
Positive	Positive	Negative when $T\Delta S > \Delta H$ Positive when $T\Delta S < \Delta H$	Spontaneous at high T Nonspontaneous at low T
r. Al-Saadi			

Standard Free-Energy Change

- The **standard free energy** (ΔG°_{rxn}) of a system is the change in free energy when reactants in their standard states are converted to *products* in their *standard states*.
- Standard states are:

o Gases $[O_{2}(g), CO_{2}(g), CH_{4}(g)]$ 1 atm Liquids Pure liquid $[H_2O(I), C_2H_5OH(I)]$ o Solids Pure solid [Na(s), Mg(s), AICI₃(s)] The most stable form at 1 atm and 25°C Elements

Solutions 1 M concentration

Dr. Al-Saadi

Standard Free-Energy Change

Consider the following equation:

$$a A + b B \rightarrow c C + d D$$

The change in standard free-energy (ΔG°_{rxn}) is:

$$\Delta G^{\circ}_{rxn} = [c \Delta G^{\circ}_{f}(C) + d \Delta G^{\circ}_{f}(D)] - [a \Delta G^{\circ}_{f}(A) + b \Delta G^{\circ}_{f}(B)]$$

In general, the change of entropy of a chemical reaction (a system) is given by:

$$\Delta G^{\circ}_{rxn} = \Sigma n \Delta G^{\circ}_{f} (products) - \Sigma m \Delta G^{\circ}_{f} (reactants)$$

where *n* and *m* are the stoichiometric coefficients of the reactants and products in a given equation.

Dr. Al-Saad

Standard Free Energy of Formation

- The standard free energy of formation (ΔG°_f) of a compound is the change in free energy that occurs when 1 mole of that compound is formed from elements in their standard states.
 - \circ It is very similar to the concept of the standard enthalpy of formation (Δ H°_{f}) that you learned in CHEM 101.

$$N_{2}(g) + 2O_{2}(g) \longrightarrow 2NO_{2}(g) \qquad \Delta G = 103.6 \text{ kJ}$$

$$\frac{1}{2} \frac{N_{2}(g)}{N_{2}(g)} + \frac{O_{2}(g)}{O_{2}(g)} \longrightarrow 1NO_{2}(g) \qquad \Delta G = 51.8 \text{ kJ} = \Delta G_{f}^{o}(NO_{2})$$
Elements @ standard states
$$\Delta G_{f}^{o} = 0 \qquad \Delta G_{f}^{o} = 51.8 \text{ kJ/mol}$$

$$C(s) + 2H_2(g) + \frac{1}{2}O_2(g) \longrightarrow CH_3OH(I)$$
 $\Delta G_f^\circ = -166 \text{ kJ/mol}$
 $2Fe(s) + \frac{1}{2}O_2(g) \longrightarrow Fe_2O_3(s)$ $\Delta G_f^\circ = -741 \text{ kJ/mol}$

Dr. Al-Saad

Standard Free-Energy Change

Exercise:

Calculate the standard free-energy change for the following reaction at 25°C.

 $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$

```
\Delta G^{\circ}_{\text{rxn}} = \Sigma n \, \Delta G^{\circ}_{\text{f}} (\text{products}) - \Sigma m \, \Delta G^{\circ}_{\text{f}} (\text{reactants})
= 2[\Delta G^{\circ}_{\text{f}} (\text{KCl}(s)] + 3[\Delta G^{\circ}_{\text{f}} (O_{2}(g)] - 2[\Delta G^{\circ}_{\text{f}} (\text{KClO}_{3}(s)]
= 2[-408.3 \text{ kJ/mol}] + 3[0] - 2[-289.9 \text{ kJ/mol}]
= -816.6 - (-579.8) = -236.8 \text{ kJ/mol}
```

- The reaction is spontaneous.
- o A negative ΔG° corresponds to a larger equilibrium constant (K), while a positive ΔG° corresponds to a smaller equilibrium constant (K).

Dr. Al-Saadi

9

18.4

Standard Free-Energy Change

Exercise:

The reaction $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ has $\Delta H^\circ = 177.8$ kJ/mol and $\Delta S^\circ = 160.5$ J/K·mol. Predict the spontaneity of the reaction at room temperature and at $1000^\circ C$.

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

What is the temperature above which the reaction would favor the formation of CaO(s) and $CO_2(g)$?

Dr. Al-Saadi

Standard Free-Energy Change

- The temperature affects the sign of ΔG° of chemical reactions.
- Consider the melting of ice:

 $H_2O(s) \rightarrow H_2O(I)$ $\Delta H^\circ = 6.03 \text{ kJ/mol}$; $\Delta S^\circ = 22.1 \text{ J/K} \cdot \text{mol}$

т (°С)	Т (К)	ΔH° (J/mol)	ΔS° (J/K·mol)	$\Delta S_{\text{surr}} = -\frac{\Delta H^{\circ}}{T}$ (J/K · mol)	$\Delta S_{\text{univ}} = \Delta S^{\circ} + \Delta S_{\text{surr}} (J/K \cdot \text{mol})$	TΔS° (J/mol)	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ (J/mol)
-10	263	6.03×10^{3}	22.1	-22.9	-0.8	5.81×10^{3}	$+2.2 \times 10^{2}$
0	273	6.03×10^{3}	22.1	-22.1	0	6.03×10^{3}	0
10	283	6.03×10^{3}	22.1	-21.3	+0.8	6.25×10^{3}	-2.2×10^{2}

*Note that at 10° C, ΔS° (ΔS_{sys}) controls, and the process occurs even though it is endothermic. At -10° C, the magnitude of ΔS_{surr} is larger than that of ΔS° , so the process is spontaneous in the opposite (exothermic) direction.

The process is:

 ΔG° is -ve \circ spontaneous at 10°C. (Ice melts at this temperature)

 ΔG° is +ve \circ nonspontaneous at – 10°C. (Ice does not melt at this temperature)

 ΔG° is 0 \circ at equilibrium at 0°C. (Ice and water are at equilibrium at this temperature)

Dr. Al-Saadi

11

18 5

Relationship between ΔG and ΔG°

• Most of the reactions take place in states other than their standard states. Thus, in order to determine spontaneity of a reaction, we need to know how to calculate ΔG when the reaction is not occurring at standard states.

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

where:

- o ΔG is the non-standard free energy.
- o ΔG° is the standard free energy (from appendix 2).
- o $R = 8.314 \text{ J/K} \cdot \text{mol}$
- o T is in Kelvin.
- o Q is the reaction quotient.

Examples of *nonstandard states*:

- Solutions with concentrations other than 1 *M*.
- Gases having pressures other than 1 atm.

Dr. Al-Saadi

Relationship between ΔG and ΔG°

Exercise:

Consider the reaction: $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ How does the value of ΔG change when the pressures of the H_2 , Cl_2 and HCl gases are changed to 0.25 atm, 0.45 atm and 0.30 atm, respectively at 25°C?

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

First of all calculate ΔG° using appendix 2.

 $\Delta G^{\circ} = [2 (-95.27 \text{ kJ/mol})] - [0 + 0] = -190.54 \text{ kJ/mol}$ Secondly, calculate Q.

$$Q_p = \frac{(P_{HCl})^2}{(P_{H_2})(P_{Cl_2})} = \frac{(0.30)^2}{(0.25)(0.45)} = 0.80$$

Cont.

. .

Dr. Al-Saadi

18.5

Relationship between ΔG and ΔG°

Thirdly, find the non-standard free energy.

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

 $\Delta G = -190540 \text{ J/mol} + (8.314 \text{ J/K·mol})(298 \text{ K}) \ln(0.80)$

 $\Delta G = -191.09 \text{ kJ/mol}$

The reaction becomes *more spontaneous* since the free energy is more negative. Thus, more HCl will be formed with the given pressures.

The reaction will continue producing more HCl and consuming more H_2 and Cl_2 until $Q_p = K_p$.

Dr. Al-Saadi

Relationship between ΔG° and K

Example:

Using the table of standard free energies, calculate the equilibrium constant, K_p , for the following reaction at 25°C.

$$2HCl(g) \iff H_2(g) + Cl_2(g)$$

$$\Delta G^{\circ} = [0 + 0] - [2 (-95.27 \text{ kJ/mol})]$$

= 190.54 kJ/mol (nonspontaneous)

Substitute into:

$$\Delta G^{\circ} = -RT \ln K$$

$$190.54 \times 10^3 \text{ J/mol} = -(8.314 \text{ J/K·mol})(298 \text{ K}) \ln K_p$$

 $K_p = 3.98 \times 10^{-34}$

K < 1 (reactants are favored)

Dr. Al-Saadi

Relationship between ΔG° and K

Example:

The overall reaction for corrosion is:

 $4\text{Fe}(s) + 3O_2(g) \rightleftharpoons 2\text{Fe}_2O_3(s)$

The ΔH_f° for Fe₂O₃ (s) is – 826 kJ/mol, and S° (J/K·mol) for Fe₂O₃(s), Fe(s) and O₂(g) are 90, 27 and 205, respectively. Calculate K for this reaction at 25°C.

Dr. Al-Saad

Thermodynamics of Living Systems

- Thermodynamics have a great effect in biological sciences, such as processes taking place inside our bodies.
- Many chemical reactions carried out inside the body (such as DNA and protein formation) are *not* spontaneous, but they can proceed through *coupled reactions*.

Proteins are polymers made from connecting different amino acids together. However, formation of proteins from amino acids is a *nonspontaneous* process.

For example: alanine + glycine \rightarrow alanylglycine ΔG° = + 29 kJ/mol Amino acids Protein molecule

Thermodynamics of Living Systems

- Tracking chemistry inside our bodies:
 - Metabolism process:

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$$
 $\Delta G^{\circ} = -2880 \text{ kJ/mol}$

 The free energy released from metabolism is used to synthesize energy-storage molecules called adenosine triphosphate (ATP):

$$_{\text{HO}}$$
 $_{\text{H}}$ $_{\text$

Based on the body needs, ATP are hydrolyzed back to ADP and releases 31
 kJ/mol of free energy, that can be utilized to drive unfavorable (nonspontaneous) important chemical reactions, such as protein synthesis.

Dr. Al-Saadi

21

Thermodynamics of Living Systems

- Tracking chemistry inside our bodies:
 - With the help of enzymes, the *nonspontaneous* protein synthesis reaction inside the body is *coupled* to the *spontaneous* ATP hydrolysis to favor the formation of proteins as follows:

alanine + glycine
$$\rightarrow$$
 alanylglycine ΔG° = + 29 kJ/mol ATP + H₂O (/) \rightarrow ADP + H₃SO₄ (aq) ΔG° = - 31 kJ/mol

alanine + glycine + ATP + $H_2O(I) \rightarrow ADP + H_3SO_4(aq) + alanylglycine$

Dr. Al-Saadi

Exercises

- For which process is ΔS negative?
 - 1) Evaporation of 1 mol of CCl₄(I).
 - 2) Mixing 5 mL ethanol with 25 mL water.
- ✓ 3) Compressing 1 mol Ne at constant temperature from 1.5 atm to 0.5 atm.
 - 4) Raising the temperature of 100 g Cu from 275 K to 295 K.
 - 5) Grinding a large crystal of KCl to powder.

Dr. Al-Saadi

23

Exercises

- Which of the following shows a decrease in entropy?
- √ 1) Precipitation
 - 2) Gaseous reactants forming a liquid
 - 3) A burning piece of wood
 - 4) Melting ice
 - 5) Two of these

Dr. Al-Saadi

Exercises

- At 1 atm, liquid water is heated above 100°C. ΔS_{surr} for this process is:
 - 1) greater than zero.
- ✓ 2) less than zero.
 - 3) equal to zero.
 - 4) more information is needed to answer this question.

Dr. Al-Saadi

25

Exercises

• Given the following free energies of formation:

$$\begin{array}{ccc} & & & \Delta G^{\circ}_{\rm f} \\ {\rm C_2H_2(g)} & & 209.2 \ {\rm kJ/mol} \\ {\rm C_2H_6(g)} & & -32.9 \ {\rm kJ/mol} \end{array}$$

Calculate K_p at 298 K for:

$$C_2H_2(g) + 2H_2(g) \iff C_2H_6(g)$$

1)
$$9.07 \times 10^{-1}$$

2)97.2

3)
$$1.24 \times 10^{31}$$

 \checkmark 4) 2.72 × 10⁴²

5)
$$7.55 \times 10^{51}$$

Dr. Al-Saadi