

Chapter 15

CHEMICAL EQUILIBRIUM

(Part II)

Dr. Al-Saac

15.4

The Reaction Quotient and Equilibrium Constant

$$CO(g) + Cl_2(g) \longleftrightarrow COCl_2(g)$$

$$K_{\rm c} = \frac{[\mathrm{COCl_2}]_{\mathrm{eq}}}{[\mathrm{CO}]_{\mathrm{eq}}[\mathrm{Cl_2}]_{\mathrm{eq}}}$$

$$Q_{\rm c} = \frac{[\mathrm{COCl_2}]}{[\mathrm{CO}][\mathrm{Cl_2}]}$$

- O $Q_c = K_c$; equilibrium is present.
- Q_c > K_c; product conc. > reactant conc.; some products must convert to reactants in order to reach equilibrium; a net shift to the left should occur; the reverse reaction is favored.
- Q_c < K_c; product conc. < reactant conc.; some reactants
 must convert to products in order to reach equilibrium; a net
 shift to the right should occur; the forward reaction is favored.

Dr. Al-Saadi

Predicting the Direction of a Reaction

Exercise:

$$N_2(g) + 3H_2(g) \iff 2NH_3(g)$$

 K_c @ 375°C is 1.2.

At the start of the reaction the concentrations of N_2 , H_2 , and NH_3 are 0.071 M, 9.2×10⁻³ M and 1.83×10⁻⁴ M, respectively.

- (a) Is the system at equilibrium?
- (b) If not, determine to which direction it must proceed in order to establish equilibrium.

Dr. Al-Saadi

3

Calculation Involving Equilibrium Constants

- Knowing the equilibrium constant (K_c or K_p) and/or the initial concentrations of reactants and products for a given reaction allows you to predict several features of that reaction, such as:
 - whether the reaction tends to occur or not.
 - whether a given set of concentrations are at equilibrium or not.
 - the equilibrium concentrations of the reaction mixture.

Dr. Al-Saadi

Calculation Involving Equilibrium
Constants

Exercise:

 $PCl_5(g) \iff PCl_3(g) + Cl_2(g)$

At a certain temperature, a 1.00-L flask initially contained 0.298 mol $PCl_3(g)$ and 8.70×10^{-3} mol $PCl_5(g)$. After the system had reached equilibrium, 2.00×10^{-3} mol $Cl_2(g)$ was found in the flask.

Calculate the equilibrium concentrations of all species and the value of K_c .

Dr. Al-Saadi

Calculation Involving Equilibrium Constants

Exercise:

$$H_2(g) + F_2(g) \iff 2HF(g)$$

 K_c is 1.15×10^2 at a certain temperature. What will be the concentrations at equilibrium if we start with 2.000 M concentrations of both H₂ and F₂?

Dr. Al-Saadi

Calculation Involving Equilibrium Constants

Exercise:

$$CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$$

 $K_c @ 700 \text{ K is 5.10.}$

Calculate the equilibrium concentrations of all species at 700 K if 1.000 mol of each component is mixed in a 1.000-L flask.

Dr. Al-Saad

Calculation Involving Equilibrium Constants

■ Exercise: $Br_2(g) \rightleftharpoons 2Br(g)$

 K_c is 1.1×10^{-3} at 1280° C. Initially, $[Br_2] = 6.3 \times 10^{-2}$ M and $[Br] = 1.2 \times 10^{-2}$ M. What are the equilibrium concentrations of Br_2 and Br at 1280° C?

Find the reaction direction; $Q = \frac{(1.2 \times 10^{-2})^2}{6.3 \times 10^{-2}} = 2.3 \times 10^{-3}$

 $Q > K_c$; the reaction will go in the reverse direction to reestablish the equilibrium.

Conc. (M) $\operatorname{Br}_2(g) \longleftrightarrow 2\operatorname{Br}(g)$ Initial $6.3 \times 10^{-2} M$ $1.2 \times 10^{-2} M$ Change +x -2x Equilibrium $(6.3 \times 10^{-2}) + x$ $(1.2 \times 10^{-2}) - 2x$

Dr. Al-Saad

$$K_{\rm c} = \frac{[{\rm Br}]^2}{[{\rm Br}_2]} = \frac{[(1.2\times10^{-2})\ -2x]^2}{(6.3\times10^{-2})\ + x} = 1.1\times10^{-3}$$

$$4\ x^2 - 0.048\ x + (7.47\times10^{-5}) = 0$$
Quadratic equation: $ax^2 + bx + c = 0$

$${\rm Solutions\ are:} \qquad x = \frac{-b\ \pm\ \sqrt{b^2-\ 4ac}}{2a}$$

$$x_1 = 1.838\times10^{-3}\ ; \quad x_2 = 1.050\times10^{-2}$$

$$\underline{\rm Equilibrium\ conc.} \qquad x_1 = 1.838\times10^{-3}\ \ \, x_2 = 1.050\times10^{-2}$$

$$[{\rm Br}] = (1.2\times10^{-2}) - 2x = 0.00832\ M$$

$$[{\rm Br}_2] = (6.3\times10^{-2}) + x = 0.0648\ M$$

$$[{\rm Br}_2] = 6.5\times10^{-3}\ M$$

$$[{\rm Br}_2] = 6.5\times10^{-2}\ M$$

Calculation Involving Equilibrium Constants

Exercise:

$$H_2(g) + F_2(g) \iff 2HF(g)$$

 K_c is 1.15×10^2 at a certain temperature. What will be the concentrations at equilibrium if we mix 3.000 mol of H₂ with 6.000 mol of F₂ in a 3.000-L flask?

Dr. Al-Saadi

Factors that Affect Chemical Equilibrium

- The chemical equilibria can be affected by several factors. Affecting the chemical equilibrium of a chemical reaction may result with an increase or decrease of the amount of its products.
- Le Châtelier's principle can be used to predict the effect of a change in conditions on a chemical equilibrium.

Dr. Al-Saad

15.5

Le Châtelier's Principle

• Le Châtelier's principle states that:

If a change is imposed on a system at equilibrium, the system will respond by *shifting* in the (*forward or reverse*) direction that minimizes the effect of that change. As a result, a new equilibrium position will be reestablished. Changes made on the system can be:

- Addition or removal of a reactant or product.
- o change in the volume and pressure of the system.
- o change in temperature.

Dr. Al-Saadi

Addition of a Substance

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

Consider the following equilibrium concentrations:

$$[N_2]_{eq} = 2.05 M$$
 ; $[H_2]_{eq} = 1.56 M$; $[NH_3]_{eq} = 1.52 M$
$$K_c = \frac{[NH_3]_{eq}^2}{[N_2]_{eq} [H_2]_{eq}^3} = 0.297$$

Let's add more N₂ by increasing its conc. from 2.05 M to 3.51 M. How do you think the system will respond to this change?

$$Q_{\rm c} = \frac{(1.52)^2}{(3.51)(1.56)^3} = 0.173 < K_{\rm c}$$

The system *responds* by shifting to the right in order to reestablish equilibrium.

Dr Al-Saad

13

Addition of a Substance

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

The system *responds* by shifting to the right in order to reestablish equilibrium.

There will be a net decrease in $[N_2]$ and $[H_2]$, and an increase in $[NH_3]$ until Q_c becomes again equal to K_c .

A change has happened to the *equilibrium position*, <u>not</u> to the equilibrium constant

Dr. Al-Saadi

Addition of a Substance

■ To the initial equilibrium mixture of N₂, H₂, and NH₃ (case: a), some N₂ is added (case: b). The *new equilibrium position* for the system (case: c) contains more N₂ (due to Less H₂), and more NH₃ than in case a.

15.5

Addition of a Substance

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

- What do you think will happen if more H_2 is added? The system will respond by shifting to the right in order to reestablish equilibrium. (Bringing back $Q_c = K_c$)
- What do you think will happen if more NH_3 is added? The equilibrium of system will be disturbed, and $Q_c > K_c$. In order for the system to reestablish equilibrium, more NH_3 must be consumed and more H_2 and N_2 must be produced until $Q_c = K_c$.
 - In general, a system at equilibrium will respond to addition of a species by consuming some of that species.

Dr. Al-Saadi

Removal of a Substance

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

- What do you think will happen if H₂ or N₂ is removed? The equilibrium of system will be again disturbed, and Q_c > K_c. The system will shift to the left to reestablish equilibrium. Some NH₃ must be consumed and some H₂ and N₂ must be produced until Q_c = K_c.
- What do you think will happen if more NH₃ is removed?
 - In general, a system at equilibrium will respond to the removal of a species by producing more of that species.

Dr Al-Saadi

17

Addition or Removal of a Substance

Dr. Al-Saadi

Addition or Removal of a Substance

Exercise:

$$2H_2S(g) + O_2(g) \iff 2S(s) + 2H_2O(g)$$

- (a) For the reaction above, determine its response when O_2 is added, when H_2S is removed, when H_2O is removed, and when S is added.
- (b) The reaction above is commonly used to get red of hydrogen sulfide (H_2S) contaminant exist in natural gas and produce sulfur. How can it be made industrially more efficient, i.e. making it consuming more H_2S ?

Dr. Al-Saad

19

Change in Volume and Pressure

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

Consider the following equilibrium concentrations:

$$[N_2O_4]_{eq} = 0.643 M$$
 ; $[NO_2] = 0.0547 M$

$$K_{c} = \frac{[NO_{2}]^{2}_{eq}}{[N_{2}O_{4}]_{eq}} = 4.63 \times 10^{-3}$$

Suppose that a pressure is applied and the volume is decreased by one-half.

As a result, the concentrations of N_2O_4 and NO_2 will be doubled.

Change in Volume and Pressure

$$N_2O_4(g) \iff 2NO_2(g)$$

Consider the following equilibrium concentrations:

$$[N_2O_4]_{eq} = 0.643 M$$
; $[NO_2] = 0.0547 M$

$$K_{c} = \frac{[NO_{2}]^{2}_{eq}}{[N_{2}O_{4}]_{eq}} = 4.63 \times 10^{-3}$$

$$Q_{\rm c} = \frac{(0.1094)^2}{1.286} = 9.31 \times 10^{-3} > K_{\rm c}$$

The system responds by shifting to the left (producing more of N_2O_4 and consuming more of NO_2) in order to reestablish equilibrium.

Change in Volume and Pressure

- Generally,
 - A decrease in the volume of a reaction vessel will cause a shift in the equilibrium in the direction that minimizes the total number of moles of gaseous species.
 - An *increase* in the volume of a reaction vessel will cause a shift in the equilibrium in the direction that *maximizes the total number of moles of* gaseous species.

Dr. Al-Saadi

Change in Volume and Pressure

Exercise:

Predict the change in direction of the following reactions:

- (a) $PCl_5(g) \iff Cl_2(g) + PCl_3(g)$ (Volume decreased) Shift to the left
- (b) $2PbS(s) + 3O_2(g) \iff 2PbO(s) + 2SO_2(g)$ (Volume increased) Shift to the left
- (c) $H_2(g) + F_2(g) \rightleftharpoons$ 2HF(g) (Volume increased) No shift

Dr. Al-Saad

23

15.5

Change in Temperature

 Unlike the case with concentration and pressure changes, the change in temperature of a chemical reaction can change the value of the equilibrium constant.

It makes the reaction faster or slower, depending on the enthalpy change (ΔH) "heat" accompanying the reaction.

Dr. Al-Saadi

Change in Temperature

$$N_2O_4(g) \iff 2NO_2(g) \qquad \Delta H^\circ = 58.0 \text{ kJ/mol}$$

Let's apply here Le Châtelier's principle to the heat absorbed as a reactant.

Heat +
$$N_2O_4(g) \iff 2NO_2(g)$$

Adding heat means the reaction will be shifted to the right. Also, addition of heat means an increase in temperature.

• In general, increasing the temperature of endothermic reactions shifts it to the right. While decreasing the temperature of endothermic reactions shifts it to the left.

Dr. Al-Saadi

Change in Temperature

- The increase in temperature favors endothermic reactions.
- The decrease in temperature favors exothermic reactions.
- The change in temperature not only affects the equilibrium position, but also alters the value of the equilibrium constant.

TABLE 13.3 Observed Value of K for the Ammonia Synthesis Reaction as a Function of Temperature*

Temperature (K)	К
500	90
600	3
700	0.3
800	0.04

*For this exothermic reaction, the value of *K* decreases as the temperature increases, as predicted by Le Châtelier's principle.

Dr. Al-Saadi

28

15.5

Does a Catalyst Affect the Equilibrium?

A catalyst

- speeds up a reaction by lowering its activation energy,
- lowers the activation energy of the forward and backward reactions to the same extent,
- neither changes the value of the equilibrium constant nor the equilibrium position, and
- causes a reaction mixture that is not at equilibrium to reach equilibrium faster.

Dr. Al-Saadi

5.5