

Chapter 14

CHEMICAL KINETICS

(Part I)

Dr. Al-Saad

14.1

Chemical Kinetics

- **Kinetics**: the study of how fast reactions take place.
 - Some reactions are fast (combustion, photosynthesis).
 - Some reactions are slow (conversion of diamond to graphite, corrosion).
- Importance of studying chemical rates:
 - Speed up desirable reactions.
 - Minimize damage and products by undesirable reactions.
 - Useful in drug design, pollution control, and food processing.

Dr. Al-Saadi

Rate of Reaction

For the reaction A → B
 As time progresses, there are more B molecules and less A molecules.

Rate of Reaction

- For the reaction A → B
- Expressed as either:
 - Rate of disappearance of reactants (decrease or negative)

or

 Rate of appearance of products (increase or positive)

The rate of growth or decay in a chemical reaction is not linear but exponential.

Dr. Al-Saadi

2

14.1

14.1

Average Reaction Rate

- For the reaction $A \rightarrow B$
- Average rate = $\frac{-\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$

The quantity $\Delta[A]$ is negative ($[A]_f$ - $[A]_i$ = -ve), because concentration of A is decreasing. The quantity $\Delta[B]$ is positive ($[B]_f$ - $[B]_i$ = +ve), because concentration of B is increasing.

Dr. Al-Saad

Average Reaction Rate

$$Br_2(aq) + HCOOH(aq) \rightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$$

The change in Br_2 concentration over time

Time (s) [Br₂] (M) What is the average rate over the first 50 seconds time interval?

 $0.0 \quad t_i \quad [Br_2]_i \quad 0.0120$ over the first 50 seconds time interval?

 $100.0 \quad 0.00846$
 $150.0 \quad 0.00710$
 $200.0 \quad 0.00596$
 $250.0 \quad 0.00596$
 $250.0 \quad 0.00596$
 $300.0 \quad 0.00420$
 $350.0 \quad 0.00353$
 $400.0 \quad 0.00296$
 $Dr. Al-Saodi$

Average rate = $\frac{-\Delta[Br_2]}{\Delta t}$

$$= \frac{-(0.0101 - 0.0120) M}{50.0 \text{ s}}$$

$$= 3.80 \times 10^{-5} \text{ M/s}$$

Average Reaction Rate The average reaction rate depends on the time interval. The average reaction rate changes over time. Plot of [Br₂] vs time is a curve

14.1 **Instantaneous Rate** • When we make Δt 0.012 shorter and shorter, Rate at 100 s: 0.010 instantaneous $2.96 \times 10^{-5} \, \text{M/s}$ Rate at 200 s: *rates* could be 0.008 $2.09 \times 10^{-5} \, \text{M/s}$ Rate at 300 s: obtained. 0.006 $1.48 \times 10^{-5} \, \text{M/s}$ instantaneous rate 0.004 is the rate at a 0.002 specific instance of 0.000 time (slope of a 200 300 400 t(s)tangent to the curve) Dr. Al-Saadi

Time

	Instantaneous Ra	ate
TABLE 14.1	Rates of the Reaction of Molecular Brom at 25°C	ine and Formic Acid
Time (s)	[Br ₂] (M)	Rate (M/s)
0.0	0.0120	4.20×10^{-5}
50.0	0.0101	3.52×10^{-5}
100.0	0.00846	2.96×10^{-5}
150.0	0.00710	2.49×10^{-5}
200.0	0.00596	2.09×10^{-5}
250.0	0.00500	1.75×10^{-5}
300.0	0.00420	1.48×10^{-5}
350.0	0.00353	1.23×10^{-5}
400.0	0.00296	1.04×10^{-5}
l-Saadi		

Rate Constant

rate = k [Br₂]

k is a proportionality constant and is constant as long as the temperature remains constant.

• Calculate the value of the rate constant (k) for this reaction.

You can use the data for any given time to get the answer.

Dr. Al-Saad

15

Rate Constant

 $rate = k [Br_2]$

 Calculate the value of the rate constant (k) for this reaction.

$$k = \frac{3.52 \times 10^{-5} M / s}{0.0101 M} = 3.49 \times 10^{-3} s^{-1}$$

$$k = \frac{1.48 \times 10^{-5} M / s}{0.00420 M} = 3.52 \times 10^{-3} s^{-1}$$

Dr. Al-Saadi

Rate Constant

 Rate constant can be calculated for reactions involving gaseous reactants and/or products by monitoring their pressures.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

The rate of appearance of the O_2 gas can be determined by monitoring its pressure.

Dr. Al-Saad

17

Rate Constant

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

$$P_{O_2}V = n_{O_2}RT$$

$$P_{O_2} = (n_{O_2}/V)RT$$

$$= [O_2]RT$$

$$[O_2] = (1/RT) P_{O_2}$$

rate =
$$\frac{\Delta[O_2]}{\Delta t} = \frac{1}{RT} \frac{\Delta P_{O_2}}{\Delta t}$$

Dr. Al-Saadi

Rate Constant

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

The rate of appearance of O_2 gas can be related to the change in P_{O_2} .

rate =
$$\frac{\Delta[O_2]}{\Delta t} = \frac{1}{RT} \frac{\Delta P_{O_2}}{\Delta t}$$

Instantaneous rate can be determined at any point on the P_{O_2} curve.

Dr Al-Saad

Stoichiometry and Reaction Rate

■ Recall that for the reaction A → B

rate =
$$\frac{-\Delta[A]}{\Delta t}$$
 = $\frac{\Delta[B]}{\Delta t}$

• What do you think the rate would be for the reaction:

$$A \rightarrow 2B$$
 ?

Note that B appears at *twice* the rate that A disappears.

rate =
$$\frac{-\Delta[A]}{\Delta t}$$
 and $2 \times \text{rate} = \frac{\Delta[B]}{\Delta t}$

Dr. Al-Saadi

Stoichiometry and Reaction Rate

• For the reaction:

rate =
$$\frac{-\Delta[A]}{\Delta t} = \frac{1}{2} \frac{\Delta[B]}{\Delta t}$$

• When stoichiometric ratios are not 1:1

$$a A + b B \rightarrow c C + d D$$

rate =
$$-\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

Dr. Al-Saaa

21

14 1

Stoichiometry and Reaction Rate

Exercise:

Write the rate expression for the following reaction:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

Dr. Al-Saadi

Stoichiometry and Reaction Rate

Exercise:

$$4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$$

If molecular hydrogen is formed at a rate of 0.168 M/s, at what rate is P_4 being produced?

The rate expression for the reaction is:

rate =
$$-\frac{1}{4} \frac{\Delta [PH_3]}{\Delta t} = \frac{1}{1} \frac{\Delta [P_4]}{\Delta t} = \frac{1}{6} \frac{\Delta [H_2]}{\Delta t}$$

 $\frac{1}{6} \frac{\Delta [H_2]}{\Delta t} = \frac{1}{6} (0.168 \, M/s) = 0.028 \, M/s$
 $\frac{1}{1} \frac{\Delta [P_4]}{\Delta t} = 0.028 \, M/s$

Dr. Al-Saadi

14 1

Stoichiometry and Reaction Rate

Exercise:

$$4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$$

At what rate is PH₃ being consumed if the rate of formation of H₂ is 0.168?

The rate expression for the reaction is:

rate =
$$-\frac{1}{4} \frac{\Delta [PH_3]}{\Delta t} = \frac{1}{1} \frac{\Delta [P_4]}{\Delta t} = \frac{1}{6} \frac{\Delta [H_2]}{\Delta t}$$

Dr. Al-Saadi

The Rate Law

$$Br_2(aq) + HCOOH(aq) \rightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$$

 $rate = k [Br_2]$

- The equation that relates the rate of the reaction to the concentration of the reactants is the *rate law*.
- In general, for the chemical raction:

$$aA + bB \rightarrow cC + dD$$

rate = $k [A]^x [B]^y$

- *k* : proportionality constant known as the rate constant.
- x and y: the order of the reaction with respect to each reactant. The values of x and y are determined experimentally.

Dr. Al-Saad

25

14.2

The Rate Law

$$Br_2(aq) + HCOOH(aq) \rightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(q)$$

Applying the general rate law equation to the reaction gives:

rate =
$$k [Br_2]^x [HCOOH]^y$$

- o x = 1 and y = 0.
- o The reaction is *first order* with respect to Br₂.
- o The reaction is **zeroth order** with respect to HCOOH.
- o The *overall order* of the reaction (*reaction order*) is equal to 1.

Dr. Al-Saadi

Reaction Order

- The order of the reaction can only be determined from experimental data, and it is <u>not</u> related to the stoichiometric coefficients.
 - o **First order** rate directly proportional to concentration.
 - o **Second order** exponential relationship.
 - Zeroth order no relationship, and the reaction rate is independent of the reactant concentration.
 - The sum of exponents (orders) indicates the overall reaction order.
- The order of the reaction is always defined in terms of reactant (and <u>not</u> product) concentrations.

Dr. Al-Saadi

27

14 2

How is a Reaction Order Determined?

$$F_2(g) + 2CIO_2(g) \rightarrow 2FCIO_2(g)$$

■ *Initial rate* is the instantaneous rate at the beginning of the reaction (*time* = 0 s).

The initial rate of the reaction changes by varying the initial concentrations of the reactants.

TABLE 14.2	Initial Rate Data for	the Reaction Betwee	n F ₂ and ClO ₂
Experiment	[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)
1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}
Dr. Al-Saadi			28

TABLE 14.2	Initial Rate Data for	the Reaction Betwee	n F ₂ and ClO ₂
Experiment	[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)
1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}

rate =
$$k [F_2]^x [ClO_2]^y$$

■ The reaction order with respect to F₂ can be determined by holding [ClO₂] constant.

Or Al-Saadi

How is a Reaction Order Determined?

TABLE 14.2	Initial Rate Data for	the Reaction Betwee	n F_2 and ClO_2
Experiment	[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)
1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}

rate =
$$k [F_2]^1 [CIO_2]^y$$

■ The rate doubles as [F₂] doubles. Thus, the rate is linearly proportional to [F₂].

The reaction is $\mathbf{1}^{\mathrm{st}}$ order with respect to \mathbf{F}_2 .

x = 1

Dr. Al-Saadi

TABLE 14.2	Initial Rate Data for	the Reaction Betwee	n F ₂ and ClO ₂
Experiment	[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)
1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}

rate =
$$k [F_2]^1 [CIO_2]^y$$

 The reaction order with respect to ClO₂ can be determined by holding [F₂] constant.

Dr. Al-Saadi

How is a Reaction Order Determined?

TABLE 14.2 Initial Rate Data for the Reaction Between F_2 and ClO_2 Experiment [F2] (M) [ClO2] (M) Initial Rate (M/s) 1 0.10 0.010 1.2×10^{-3} 2 0.10 0.040 4.8×10^{-3} 3 0.20 0.010 2.4×10^{-3}

rate =
$$k [F_2]^1 [CIO_2]^1$$

 The rate quadruples as [F₂] quadruples. Thus, the rate is also linearly proportional to [ClO₂].

The reaction is $\mathbf{1}^{\mathrm{st}}$ order with respect to CIO_2 .

$$y = 1$$

Dr. Al-Saadi 3

How is a Reaction Order Determined?

$$F_2(g) + 2CIO_2(g) \rightarrow 2FCIO_2(g)$$

■ The rate law of the reaction is:

rate =
$$k [F_2][ClO_2]$$

- The reaction is :
 - o first order with respect to F₂
 - o first order with respect to ClO₂
 - o second order overall.

Notice that a reaction order is not related to the reaction stoichiometric coefficients.

Dr. Al-Saad

33

How is a Reaction Order Determined?

$$F_2(g) + 2CIO_2(g) \rightarrow 2FCIO_2(g)$$

■ The rate law of the reaction is:

rate =
$$k [F_2][ClO_2]$$

Rate constant can be calculated (Consider Expt. 1)

Experiment	[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)
1	0.10	0.010	1.2×10^{-3}

Dr. Al-Saadi

How is a Reaction Order Determined?

$$F_2(g) + 2CIO_2(g) \rightarrow 2FCIO_2(g)$$

■ The rate law of the reaction is:

rate =
$$k [F_2][ClO_2]$$

 Rate constant can be also calculated from another set of date (Now consider Expt. 2)

Experiment	[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)
2	0.10	0.040	4.8×10^{-3}

Dr Al-Sag

35

14 2

Reaction Order

Exercise:

 $2{\rm NO}(g)+2{\rm H_2}(g)\to {\rm N_2}(g)+\ 2{\rm H_2O}\ (g)$ The following experiments were run at 1280°C.

Expt.	[NO] (<i>M</i>)	$[H_2]$ (M)	Initial Rate (M/s)
1	5.0×10^{-3}	2.0×10^{-3}	1.3×10^{-5}
2	1.0×10^{-2}	2.0×10^{-3}	5.0×10^{-5}
3	1.0×10^{-2}	4.0×10^{-3}	1.0×10^{-4}

- (a) Write down the correct rate law.
- (b) Determine the rate constant.
- (c) What is the rate of the reaction when [NO] is 4.8×10^{-3} M and [H₂] is 6.2×10^{-3} M?

Dr. Al-Saadi

Units	of	Rate	Con	stant
UIIILS	VI.	Nate	CUL	ıstanı

TABLE 14.4 Units of the	e Rate Constant k for Reactions of Various C	verall Orders
Overall Reaction Order	Sample Rate Law	Units of k
0	rate = k	$M \cdot s^{-1}$
1	rate = k[A] or rate = k[B]	s^{-1}
2	rate = $k[A]^2$, rate = $k[B]^2$, or rate = $k[A][B]$	$M^{-1} \cdot s^{-1}$
3 *	rate = $k[A]^2[B]$ or rate = $k[A][B]^2$	$M^{-2} \cdot s^{-1}$

*Another possibility for a third-order reaction is rate = k[A][B][C], although such reactions are very rare.

■ The units of the rate constant (*k*) depend on the overall reaction order.

Dr. Al-Saad

37

Integrated Rate Law

Lst order reactions

• Consider the following first-order reaction:

 $\mathsf{A} \to \mathsf{products}$

The reaction rate can be expressed either as:

rate =
$$k[A]$$
 (Rate law)

or:

$$rate = -\frac{\Delta[A]}{\Delta t}$$
 (Average rate)

Then,
$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

Dr. Al-Saadi

Integrated Rate Law

1st order reactions

14.3

• Consider the following first-order reaction:

$$A \rightarrow products$$

integrating both sides from t = 0 to t gives:

$$\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

Integrated rate law

which can be rearranged as:

$$\ln[A]_t = -kt + \ln[A]_0$$

linear equation

$$y = m x + b$$

Dr. Al-Saaa

39

Integrated Rate Law

1st order reactions

• For a 1st order reaction, a plot of In[A] vs. time yields a straight line with slope = -k (the rate constant).

 $\ln[A]_t = -kt + \ln[A]_0$

Dr. Al-Saadi

Integrated Rate Law

Exercise:

$$2A \rightarrow B$$

The above reaction is 1st order in A, and its rate constant is 7.5 x 10⁻³ s⁻¹ at 110°C. How many minutes will it take for [A] to decrease from 1.25 M to 0.71 **M**?

$$\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

Half Life 1st order reactions

- Half-life $(t_{1/2})$ is the time that it takes for the reactant concentration to drop to half of its original value.
- For 1st order reactions:

$$\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

when $t = t_{1/2}$, $[A]_t = \frac{1}{2}[A]_0$. Then,

In2 = 0.693

$$t_{1/2} = \frac{1}{k} \ln(\frac{[A]_0}{\%[A]_0})$$

For 1st order reaction, $t_{1/2} = \frac{0.693}{k}$

14 3

Half Life and Rate Constant

For 1st order reaction, $t_{1/2} = \frac{0.693}{k}$

- The half life is inversely proportional to the rate constant of the reaction. A short half-life corresponds to a larger rate constant (faster reactions).
- Measurement of the half-life is one way to determine the rate constant.

Dr. Al-Saadi

2nd Order Reactions

 The integrated rate law and half-life for 2nd order reactions can be also derived.

o Integrated rate law

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

o Half-life

The half-life of second-order reaction is NOT constant, and it depends on the initial conc. of the reactant.

$$t_{1/2} = \frac{1}{k[A]_0}$$

Dr. Al-Saaa

45

Integrated Rate Law & Half Life

TABLE 14.5	Summary of the Kinetics of Zeroth-Order, First-Order, and Second-Order Reactions		
Order	Rate Law	Integrated Rate Law	Half-Life
0	rate = k	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$	$\frac{[A]_0}{2k}$
1	rate = k[A]	$ \ln\frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -kt $	$\frac{0.693}{k}$
2	$rate = k[A]^2$	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$	$\frac{1}{k[\mathbf{A}]_0}$

Dr. Al-Saadi

Collision Theory

- Particles must collide with each other in order to react.
- *Collision Theory*: The greater the frequency of collisions, the higher the reaction rate.

number of collisions rate ∞ -1 second

Does every collision result with a chemical reaction? Is every collision an *effective collision*?

Dr. Al-Saadi

14.4

Collision Theory

- In order to have an *effective collision* which causes a reaction to proceed, some factors must be met:
 - o Proper orientation of the reactant molecules.
 - o Sufficient kinetic energy (faster motion) of the reactant molecules.

Activation Energy

• Activation energy (E_a) is the minimum amount of energy required to initiate a chemical reaction.

E_a is an energy barrier that prevents less energetic molecules from proceeding to the product side.

Potential energy profile for the reaction: Al-Saadi $CI + NOCI \rightarrow CI_2 + NO$

51

Do Reactions Depend on Temperature?

Cocking food at 200°C and at 20°C. Which one would be faster?

- Hard-boiling eggs in boiling water or just in warm water. Which process would be faster?
- Keeping fruits on the shelf, keeping food inside the refrigerator, or keeping food in the freezer. Where would the fruit spoil more slowly?
- Making tea in Dhahran or in Sodah. Where would it be faster?

Dr. Al-Saadi

52

Temperature Effect on Reaction Rate

Potential energy profile for the reaction: ${\rm Cl} + {\rm NOCl} \rightarrow {\rm Cl_2} + {\rm NO}$

According to kinetic molecular theory (CHEM 101),

 $KE_{\text{ave}} \propto \text{absolute } T$

When the temperature is raised, more molecules will have sufficient *KE* to exceed the activation energy barrier. As a result, the reaction rate increases.

Dr. Al-Saad

53

The Arrhenius Equation

 The dependence of the rate constant of a reaction on temperature can be expressed by the Arrhenius equation:

Rate constant decreases with

 $k = Ae^{\frac{-E_{\rm a}}{RT}} \quad \leftarrow$

the increase of activation energy, with the increase of collision frequency, and with the decrease in temperature

 E_a : activation energy.

R: universal gas constant (8.314 J/K·mol).

A: frequency factor (collision frequency).

T: Kelvin temperature.

Dr. Al-Saadi

The Arrhenius Equation

$$k = Ae^{\frac{-E_{\rm a}}{RT}}$$

 Arrhenius equation can be expressed in other useful forms.

Taking the natural logarithm of both sides:

$$\ln k = \ln A e^{\frac{-E_a}{RT}}$$

Then:

$$\ln k = \ln A - \frac{E_{\rm a}}{RT}$$

Rearrangement gives a linear equation as:

Dr Al-Saad

Plot of Arrhenius Equation

$$\ln k = \left(-\frac{E_{\rm a}}{R}\right)\left(\frac{1}{T}\right) + \ln A$$

■ The straight line resulting from plotting the Arrhenius equation has a slope that is equal to $-E_a/R$.

Thus, the value of the activation energy (E_a) can be determined from knowing the rate constant (k) at a specific temperature.

Note that the slope is -ve. As a result, the value of E_a will be +ve.

Dr. Al-Saadi

Another Form of Arrhenius Equation

Simple mathematical treatment of Arrhenius equation gives:

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

- o If we know the rate constants at two temperatures, then the activation energy can be calculated.
- If we know the activation energy and the rate constant at a given temperature, the value of the rate constant at any other temperature can be calculated.

Dr. Al-Saad

57

14.4

Using Arrhenius Equation

Exercise:

Find the activation energy for the following reaction:

$$CO(g) + NO_2(g) \rightarrow CO_2(g) + NO(g)$$

The rate constants were found to be 0.028 $M^{-1}s^{-1}$ at 327°C and 23 $M^{-1}s^{-1}$ at 527°C.

$$k_1 = 0.028 \text{ M}^{-1}\text{s}^{-1}$$

@ $T_1 = 327 + 273 = 600 \text{ K}$

$$k_2 = 23 \text{ M}^{-1}\text{s}^{-1}$$

@ $T_2 = 527 + 273 = 800 \text{ K}$

What is the total order of this reaction?

= 133800 J/mol = 130 kJ/mol

Dr. Al-Saadi

Using Arrhenius Equation

Exercise:

Consider the reaction:

$$2 \operatorname{HI}(g) \rightarrow \operatorname{H}_2(g) + \operatorname{I}_2(g)$$

The data shown in the table were measured at different temperatures.

Find the activation energy.

k (M ⁻¹ s ⁻¹)	<i>T</i> (°C)
3.52×10 ⁻⁷	283
3.02×10 ⁻⁵	356
2.19×10 ⁻⁴	393
1.16×10 ⁻³	427
3.95×10 ⁻²	508

To answer the question, we need to find:

- In *k*
- 1/T; where T in K
- and then plot ln k vs. 1/T.

The slope of the line will lead us to the activation energy.

Dr Al-Saac

59

14.4

$$slope = \frac{\Delta y}{\Delta x} = \frac{\left[(-3.8) - (-12.8) \right]}{\left[0.00130 - 0.00170 \right]} = -23000$$

$$slope = -\frac{E_a}{R}$$

 $E_a = -slope \times R = -(-23000) \times (8.314) = 190000 \text{ J/mol} = 190 \text{ kJ/mol}$

Dr. Al-Saadi