

•••	Chapter 12 Section 1 The Three Phases of Matter			
		Gas	Solid	_
0	Density	Low	High	
0	Compressibility	High	Low	
0	Internal attraction	Low	High	
	forces			
	Liquid lies somehow in between, but it is closer in its structural properties to solid (Condensed phases).			
	$H_2O(s) \rightarrow H_2O(l)$	$\Delta H^{\circ}_{\text{fus}} = 6.02 \text{ kJ/mol}$		
	$H_2O(l) \rightarrow H_2O(g) \Delta H^{\circ}_{vap} = 40.7 \text{ kJ/mol}$			
Dr. A. Al-Saadi				4

	Chapter 12 Section 1 Dipole-Dipole In	nteraction		
0	The attractive forces between polar molecules depend on the <i>magnitude of the dipole</i> .			
0	Larger intermolecular force between the molecules requires more energy to separate between the particles and, as a result, the substance will boil at higher temperatures.			
	requires more energy to and, as a result, the subs temperatures.	tance will boil at high	her	
TABLE 12.1	requires more energy to and, as a result, the subs temperatures.	compounds with Similar Molecular N	ler Masses	
TABLE 12.1 Compound	requires more energy to and, as a result, the subs temperatures. Dipole Moments and Boiling Points of C Structural Formula	Compounds with Similar Molecular N Dipole Moment (D)	Vasses Boiling Point (°C)	
TABLE 12.1 Compound Propane	requires more energy to and, as a result, the subs temperatures. Dipole Moments and Boiling Points of C Structural Formula CH ₃ CH ₃ CH ₃ CH ₃	Compounds with Similar Molecular N Dipole Moment (D) 0.1	Masses Boiling Point (°C) -42	
TABLE 12.1 Compound Propane Dimethyl ether	requires more energy to and, as a result, the subs temperatures. Dipole Moments and Boiling Points of C Structural Formula CH ₃ CH ₂ CH ₃ CH ₃ OCH ₃	Compounds with Similar Molecular N Dipole Moment (D) 0.1 1.3	Masses Boiling Point (°C) -42 -25	
TABLE 12.1 Compound Propane Dimethyl ether Methyl chloride	requires more energy to and, as a result, the subs temperatures. Dipole Moments and Boiling Points of O Structural Formula CH ₃ CH ₂ CH ₃ CH ₃ OCH ₃ CH ₃ CI	Compounds with Similar Molecular Mol	Masses Boiling Point (°C) -42 -25 -24	
TABLE 12.1 Compound Propane Dimethyl ether Methyl chloride Acetaldehyde	requires more energy to and, as a result, the subs temperatures. Dipole Moments and Boiling Points of O Structural Formula CH ₃ CH ₂ CH ₃ CH ₃ OCH ₃ CH ₃ CH ₂ CH	Compounds with Similar Molecular M Dipole Moment (D) 0.1 1.3 1.9 2.7	Masses Boiling Point (°C) -42 -25 -24 21	

••	Chapter Lon	12 Section 1 don Dispers	ion Forces			
	• Dispersion force is the only type of force that exists in <i>nonpolar molecules</i> .					
	• Dispersion force becomes more significant when the electrons are more mobile within a molecule. This is found more in large size molecules (greater molar masses)					
	found m	ore in large size	molecules (greater	r molar masses)		
	found m	ore in large size Molar Masses, Boilin at Room Temperature	molecules (greater	r molar masses) He Halogens		
	found m TABLE 12.2 Molecule	Molar Masses, Boilin at Room Temperature Molar Mass (g/mol)	molecules (greater g Points, and States of th Boiling Point (°C)	r molar masses) He Halogens State (Room Temp.)		
	found m TABLE 12.2 Molecule F ₂	Molar Masses, Boilin at Room Temperature Molar Mass (g/mol) 38.0	molecules (greater g Points, and States of th Boiling Point (°C) - 188	r molar masses) e Halogens State (Room Temp.) Gas		
	found m TABLE 12.2 Molecule F ₂ Cl ₂	Molar Masses, Boilin at Room Temperature Molar Mass (g/mol) 38.0 70.9	molecules (greater g Points, and States of th Boiling Point (°C) -188 -34	r molar masses) re Halogens State (Room Temp.) Gas Gas		
	found m TABLE 12.2 Molecule F ₂ Cl ₂ Br ₂	Molar Masses, Boilin at Room Temperature Molar Mass (g/mol) 38.0 70.9 159.8	molecules (greater g Points, and States of the Boiling Point (°C) -188 -34 59	r molar masses) re Halogens State (Room Temp.) Gas Gas Liquid		

 Chapter 12 Section 2 Viscosity It is the measure of liquid's 	TABLE 12.3	Viscosities of Some Familiar Liquids at 20°C
resistance to flow. The higher the viscosity the more slowly a liquid	Liquid	Viscosity (N·s/m²)
flows.	Acetone (C ₃ H ₆ O)	3.16×10^{-4}
 Liquids with larger intermolecular interaction tend 	Water (H ₂ O)	1.01×10^{-3}
to be more viscous.	Ethanol (C ₂ H ₅ OH)	1.20×10^{-3}
	Mercury (Hg)	1.55×10^{-3}
н-с-о-н	Blood	4×10^{-3}
H-C-O-H Glycerol	$\begin{array}{c} Glycerol\\ (C_3H_8O_3) \end{array}$	1.49
H Dr. A. Al-Saadi		27

 Chapter 12 Section 3 Other Types of Unit Cells 				
	Unit cell	Lattice	Space-filling unit cell	Net no. of atoms per unit cell
scc	Single cubic			$(8 \times 1/8 = 1)$ 1 atom / unit cell
bcc	Body-centered cubic			$(8 \times 1/8 + 1 = 2)$ 2 atoms / unit cell
fcc Dr. A. Al-Saaa	Fee-centered colice			$(8 \times 1/8 + 6 \times 1/2 = 4)$ 4 atoms / unit cell

