

 Chapter 11 Section 5 Collecting O₂ Gas Over Water 	Table 5.3 of Water Vap Various Temp	Pressure or at peratures
	Temperature (°C)	Water Vapor Pressure (mmHg)
$2\text{KClO}_3(s) \longrightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$	0 5	4.58 6.54
O_2 was collected @ 22°C and $P_{Tot} (P_{O_2} + P_{H_2O})$ is 7.	10 15	9.21 12.79
The volume of the gas collected is 0.650 L.	20	17.54
	25	23.76
Calculate P_{0_2} and the mass of KClO ₃ that was cons	30	31.82
	40	42.10
$P_{\text{O}_{2}} = P_{\text{Tot}} - P_{\text{H}_{2}\text{O}} = 754 \text{ torr} - 21 \text{ torr} = 733 \text{ torr}.$	45	71.88
D V	50	92.51
$\Gamma_{0_2} V$ 2.50 v10-2 mol	55	118.04
$n_{\rm O_2} = \frac{1}{RT} = 2.39 \times 10^{-2}$ mol.	65	187.54
	70	233.7
Mass of KClO ₃ decomposed =	75	289.1
2 mol KClO 122.6 g KClC	80	355.1
2 more rectors = 2 more rectors = 2 more rectors	85	433.6
2.39×10^{-1101} O ₂ × 3 mol O ₂ × 1 mol KClO	90	525.76
	95	633.90
	100	760.00
Dr. A. Al-Saadi		9

 Chapter 11 Section 7 The van der Waals Equation 								
$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$ TABLE 11.6 Van der Waals Constants of Some Common Gases								
Ī	Gas	$a\left(\frac{\operatorname{atm}\cdot L^2}{\operatorname{mol}^2}\right)$	$b\left(\frac{L}{mol}\right)$	Gas	$a\left(\frac{\operatorname{atm}\cdot L^2}{\operatorname{mol}^2}\right)$	$b\left(\frac{L}{mol}\right)$		
	He	0.034	0.0237	O ₂	1.36	0.0318		
	Ne	0.211	0.0171	Cl ₂	6.49	0.0562		
	Ar	1.34	0.0322	CO_2	3.59	0.0427		
	Kr	2.32	0.0398	CH_4	2.25	0.0428		
	Xe	4.19	0.0510	CCl ₄	20.4	0.138		
	H_2	0.244	0.0266	NH ₃	4.17	0.0371		
	N_2	1.39	0.0391	H ₂ O	5.46	0.0305		
Dr.	Dr. A. Al-Saadi 35							