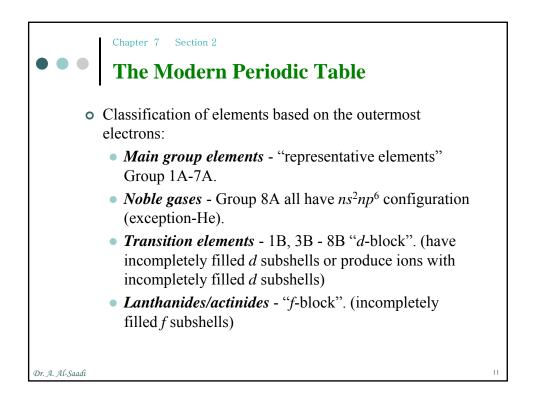
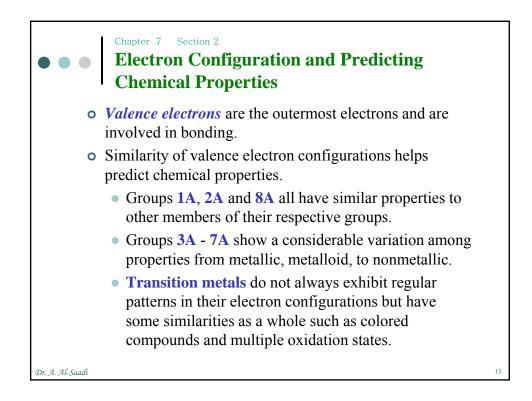
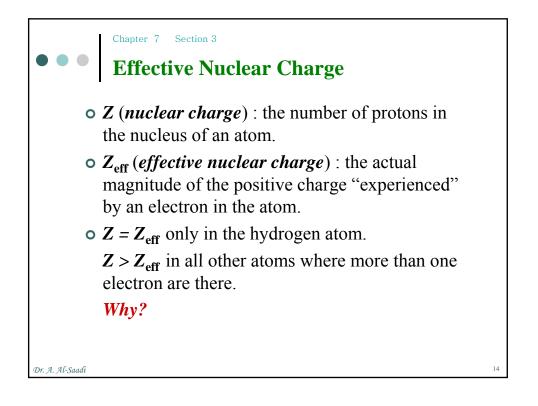


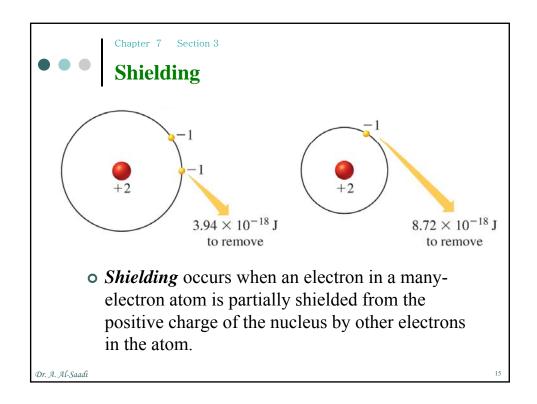
	10	Tenae	leev	s Per	iouic	1 au	e	
				TABEL	LE II			
REIHEN	GRUPPE 1. R ² O	GRUPPE II.	GRUPPE III. R ² O ³	GRUPPE IV. RH ⁴ RO ²	GRUPPE V. RH ³ R ² O ⁵	GRUPPE VI. RH ² RO ³	GRUPPE VII. RH R ² 07	GRUPPE VIII. RO4
5	H = 1 Li = 7 N a = 23 K = 39 (C u = 63) R b = 85 (Ag = 108) Cs = 133 (-) - (A u = 199) -	Ca = 40 Zn = Cas Sr = 87 Cd = 112 Ba = 137 —	-= 44 a-A+1#68 ?Yt = 88 In = 113 ?Di = 138 - ?Er = 178	Ti = 48 UM <u>- = 72</u> Zr = 90 Sn = 118 ?Ce = 140 _ ?La = 180	Nb = 94 Sb = 122 - Ta = 182	Mo = 96 Te = 125 - W = 184	F = 19 C1 = 35,5 Mn = 55 Br = 80 - = 100 J = 127 - - - - - -	Fe = 56, Co = 59, Ni = 59, Cu = 63. Ru = 104, Rh = 104, Pd = 106, Ag = 108.

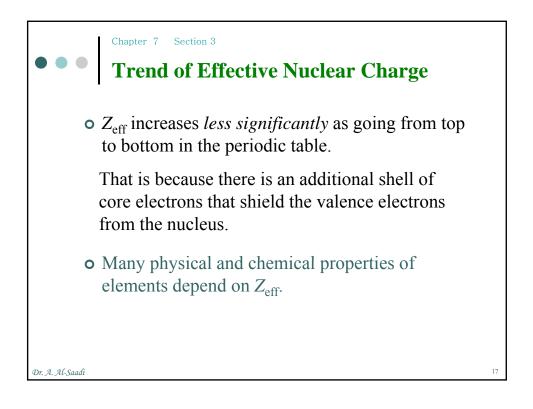

	ter 7 Section	ent of the Period	ic Table
prope	erties of an	ectly predicted the exist element that he called " the element Ga was dis	'Eka-aluminum''.
		Eka-aluminum (Ea)	
Pro	perties	Eka-aluiiilliuiii (Ea)	Gallium (Ga)
	nic mass	68 amu	Gallium (Ga) 69.9 amu
Aton	-	<u> </u>	· · · ·
Aton Melti	nic mass	68 amu	69.9 amu

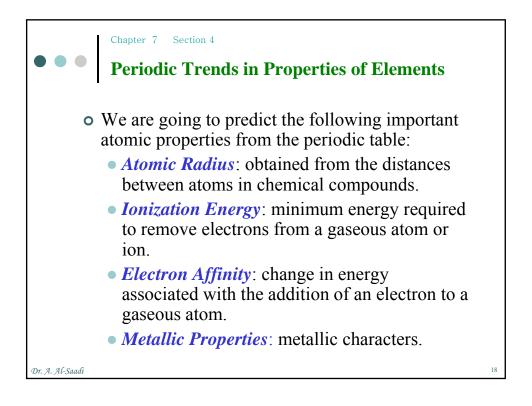
	C	hapt	er 7	7	Sec	tion	1											
	Ι)e	ve	lo	pı	ne	en	t o	f 1	th	e]	Pe	ri	od	lic	: T	a	bl
				time Ages		00			5–18 3–18			=	894- 923-				196	5-
	н																	He
	Li	Be										3	в	С	N	0	F	Ne
	Na	Mg					145 - AR						Al	Si	Р	s	CI	Ar
	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
							62 (P											
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	
)r. A. Al-Saadi				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	

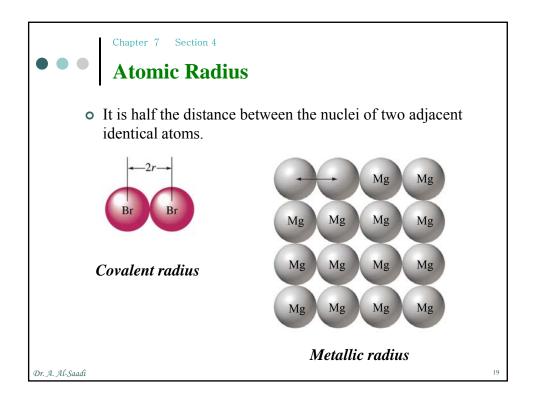


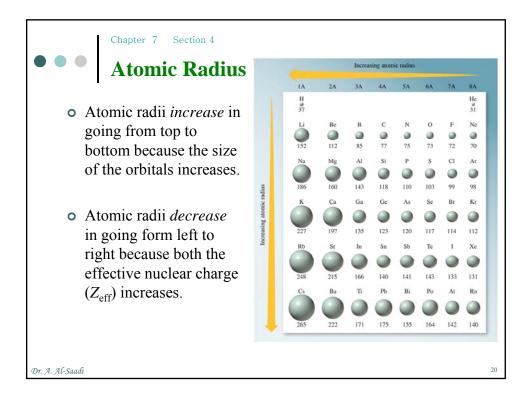

		apte: ' he			de		P	eri	ioc	lic	Т	ab	le						
	1	IA I H Is ¹	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	8A 18 2 He 1s ²
The	2	3 Li 2r ¹	4 Be 2s ²											5 B 2s ² 2p ¹	6 C 2s ² 2p ²	7 N 2s ² 2p ³	8 0 2s ² 2p ⁴	9 F 2s ² 2p ⁵	10 Ne 2s ² 2p ⁶
configurations	H	11	12											13	14	15	16	17	18
shown are	3	Na 3s ¹	Mg 3s ²	3B 3	4B 4	5B 5	6B 6	7 B 7	8		10	1B 11	2B 12	Al 3s ² 3p ¹	Si 3s ² 3p ²	P 3s ² 3p ³	S 3s ² 3p ⁴	Cl 3s ² 3p ⁵	Ar 3s ² 3p ⁶
those for the <i>outermost</i>	4	19 K 4s ¹	20 Ca 4s ²	21 Sc 4s ² 3d ¹	22 Ti 4s ² 3d ²	23 V 4s ² 3d ³	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	28 Ni 4s ² 3d ⁸	29 Cu 4s ¹ 3d ¹⁰	30 Zn 3d ¹⁰ 4s ²	31 Ga 4s ² 4p ¹	32 Ge 4s ² 4p ²	33 As 4s ² 4p ³	34 Se 4s ² 4p ⁴	35 Br 4s ² 4p ⁵	36 Kr 4s ² 4p ⁶
<i>electrons</i> , which are the	5	37 Rb 5e ¹	38 Sr 5r ²	39 Y 5s ² 4d ¹	40 Zr 5s ² 4d ²	41 Nb 5s ¹ 4d ⁴	42 Mo 5s ¹ 4d ⁵	43 Te 5s ² 4d ⁵	44 Ru 5s ¹ 4d ⁷	45 Rh 5s ¹ 4d ⁸	46 Pd 4d ¹⁰	47 Ag	48 Cd 5s ² 4d ¹⁰	49 In 5s ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 I 5s ² 5p ⁵	54 Xe 5s ² 5p ⁶
electrons involved in	6	55 Cs 6s ¹	56 Ba 61 ²	71 Lu 62551414	72 Hf	73 Ta 6s ² 5d ³	74 W 6s ² 5d ⁴	75 Re 6s ² 5d ⁵	76 Os 6s ² 5d ⁶	77 Ir 6s ² 5d ⁷	78 Pt 6s ¹ 5d ⁹	79 Au 6s ¹ 5d ¹⁰	80 Hg	81 Tl 6s ² 6p ¹	82 Pb 6s ² 6p ²	83 Bi 6s ² 6p ³	84 Po 6s ² 6p ⁴	85 At 6s ² 6p ⁵	86 Rn 6s ² 6p ⁶
chemical bonding and	7	87 Fr 7s ¹	88 Ra 7s ²	103 Lr 11 ² 5/ ¹⁴ 6d	104 Rf 7s ² 6d ²	105 Db 7s ² 6d ³	106 Sg 7s ² 6d ⁴	107 Bh 7s ² 6d ⁵	108 Hs 7s ² 6d ⁶	109 Mt 7s ² 6d ⁷	110 Ds 7s ² 6d ⁸	111 Rg 7s ² 6d ⁹	112 	$\frac{113}{-}$ $7s^27p^1$	$\frac{114}{7s^27p^2}$	$\frac{115}{-}$ $7s^27p^3$	116 	(117)	118 7s ² 7p ⁶
that are																			
responsible for																			
the chemical					57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
properties.					6s ² 5d ¹ 89	6s ² 4f ¹ 5d ¹ 90	65 ² 4f ³	6s ² 4f ⁴ 92	65 ² 4f ⁵ 93	6s ² 4f ⁶ 94	6s ² 4f ⁷ 95	64 ² 4f ⁷ 5d	65 ² 4f ⁹ 97	6s ² 4f ¹⁰ 98	6s ² 4f ¹¹ 99	6s ² 4f ¹²	6s ² 4f ¹³	6s ² 4f ¹⁴	
					Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	cr	Es	Fm	Md	No	

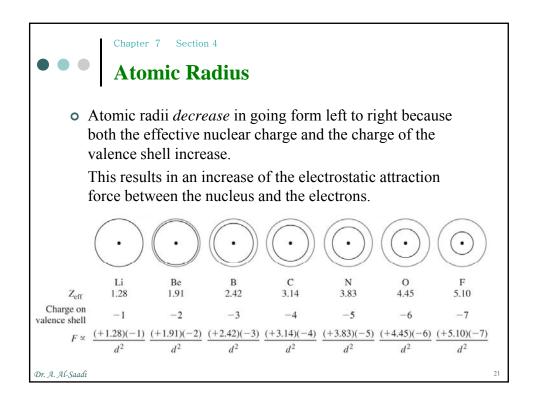

			pter																		
		C]	las	si	fic	at	io	n (of I	El	en	1e 1	nts	5							
	(1A																	8A)	
1	1	H	2A 2										(3A 13	4A 14	5A 15	6A 16	7A 17	18 He	1	
	2	Li	Be						\ .					в	С	N	0	F	Ne	2	
	3	Na	Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	A 1	Si	Р	s	Cl	Ar	3	
	4	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	4	
	5	Rb	Sr	Y	Zr	NЪ	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	5	
	6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn	6	
	7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg								7	
																					-
				6	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm	Yb	6		
				7	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	7		
r. A. Al-Saadi																			_		

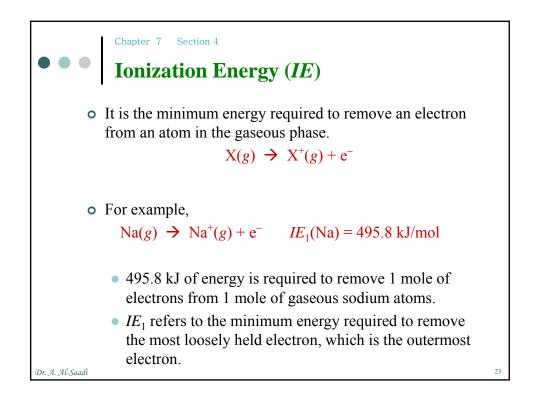

•••	Elect	7 Section 2 ron Configura ticular Group			
TABLE	table h	eral, a particula as a distinct ele ctron Configurations	ectron confi	guration.	its
	Gro	up 1A	Gro	up 2A	
	Li	[He]2 <i>s</i> ¹	Be	[He]2 <i>s</i> ²	
	Na	[Ne]3s ¹	Mg	[Ne]3 <i>s</i> ²	
	К	$[Ar]4s^1$	Ca	$[Ar]4s^2$	
	Rb	[Kr]5 <i>s</i> ¹	Sr	$[Kr]5s^2$	
	Cs	[Xe]6s ¹	Ba	$[Xe]6s^2$	
	Fr	$[\mathbf{Rn}]7s^1$	Ra	$[Rn]7s^2$	

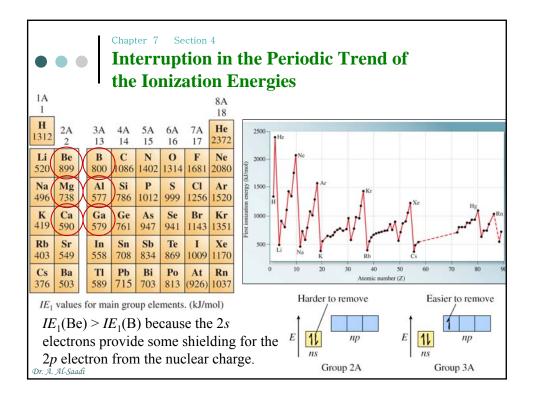


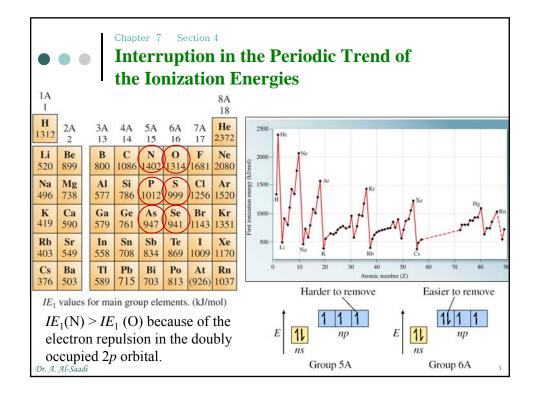


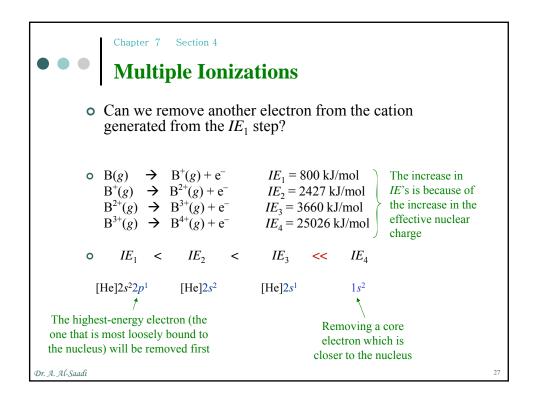


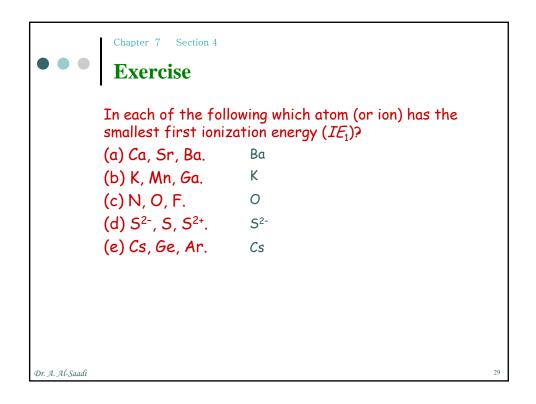

Chapter 7 Section 3 Trend of Effect	ive I	Nucl	ear C	harg	ge	
• $Z_{\rm eff}$ increases as goin	ng ac	ross a	i perio	d of t	he	
periodic table.	Li	Be	В	С	Ν	0
Z	3	4	5	6	7	8
$Z_{\rm eff}$ (felt by the valence electrons)	1.28	1.91	2.42	3.14	3.83	4.45
That is because the n the same. Only the va	alue o	of Z a				
of valence electrons	increa	ase.				
$\sigma \text{ represents the shi} \\ \text{Dr. A. Al-Saadi} 0 \text{ but less than } Z$	eff = Z ielding		tant (gr	eater t	han	16

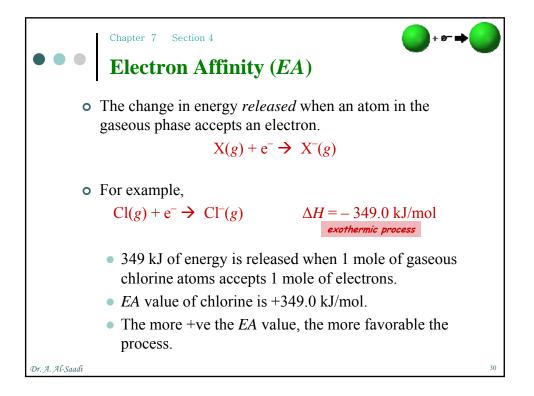


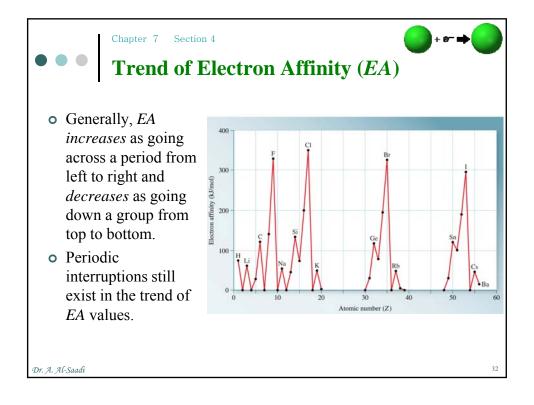


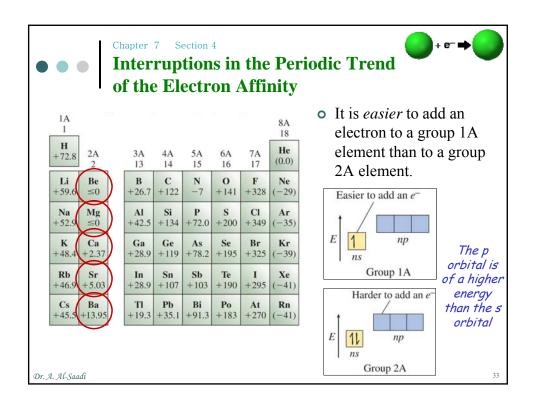


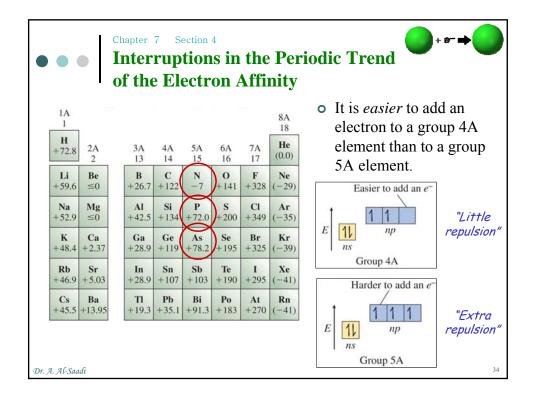

Chapter 7 Section 4 Atomic Radi	
Arrange the follo of increasing size	owing groups of atoms in order
(a) Rb, Na, Be.	
(b) Sr, Ne, Se.	Ne < Se < Sr
(c) P, Fe, O.	O < P < Fe
Dr. A. Al-Saadi	22

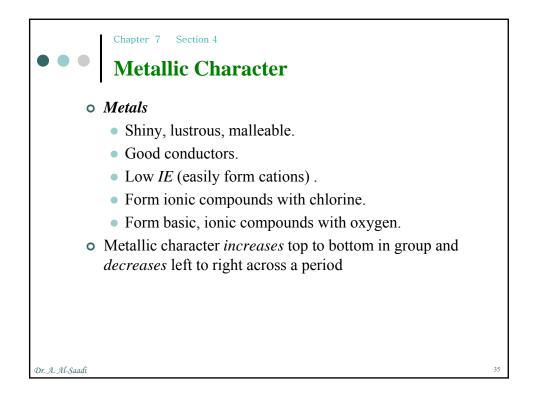

Chapter 7 Section 4 Ionization Ener	rgy ((IE))						
• Generally, ionization energy increases as $Z_{\rm eff}$ increases.	1A 1 H 1312	2A 2		3A 13	4A 14	5A 15	6A 16	7A 17	8A 18 He 2372
On going down a group	Li 520	Be 899		B 800	С 1086	N 1402	0 1314	F 1681	Ne 2080
(from top to bottom), the value of IE_1 decreases.	Na 496	Mg 738		Al 577	Si 786	P 1012	S 999	Cl 1256	Ar 1520
·	K 419	Ca 590		Ga 579	Ge 761	As 947	Se 941	Br 1143	Kr 1351
On going across a period (left to right), the	Rb 403	Sr 549		In 558	Sn 708	Sb 834	Te 869	I 1009	Xe 1170
value of IE_1 increases.	Cs 376	Ba 503		TI 589	Рb 715	Bi 703	Po 813	At (926)	Rn 1037
Dr. A. Al-Saadi	IE ₁	values	s fo	r ma	in gro	up ele	ments	. (kJ/n	nol)

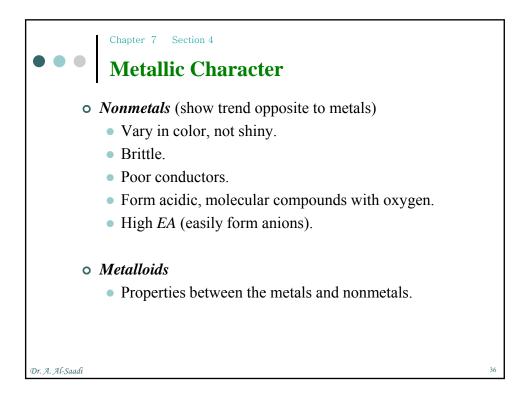





TABL	E 7.3	Ionizati	ion Energi	es (in kJ/n	iol) for Ele	ments 3 th	rough 11*	:			
	Z	IE ₁	IE ₂	IE ₃	IE ₄	IE _s	IE ₆	IE7	IE ₈	IE ₉	IE 10
Li	3	520	7,298	11,815							
Be	4	899	1,757	14,848	21,007	21,007					
В	5	800	2,427	3,660	25,026	32,827					
С	6	1,086	2,353	4,621	6,223	37,831	47,277				
N	7	1,402	2,856	4,578	7,475	9,445	53,267	64.360			
0	8	1,314	3,388	5,301	7,469	10,990	13,327	71.330	84,078		
F	9	1,681	3,374	6,050	8,408	11,023	15,164	17,868	92,038	106,434	
Ne	10	2,080	3,952	6,122	9,371	12,177	15,238	19,999	23,069	115,380	131,43
Na	11	496	4,562	6,910	9,543	13.354	16.613	20,117	25,496	28,932	141.36






lectron A	ffinity	(E A)		
1A 1					8A
H +72.8 2A 2	3A 4A 13 14	5A 15	6A 16	7A 17	18 He (0.0)
$ \begin{array}{c c} \mathbf{Li} & \mathbf{Be} \\ +59.6 & \leq 0 \end{array} $	B C +26.7 +122	N -7	0 +141	F +328	Ne (-29)
$\begin{array}{c c} \mathbf{Na} & \mathbf{Mg} \\ +52.9 & \leq 0 \end{array}$	Al Si +42.5 +134	P +72.0	S +200	Cl +349	Ar (-35)
K Ca +48.4 +2.37	Ga Ge +28.9 +119	As +78.2	Se +195	Br +325	Kr (-39)
Rb +46.9 Sr +5.03	In Sn +28.9 +107	Sb +103	Te +190	I +295	Xe (-41)
Cs +45.5 Ba +13.95	TI +19.3 Pb +35.1	Bi +91.3	Po +183	At +270	Rn (-41)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

