Chapter 15

Applications of Aqueous Equilibria

Contents

Acid-base equilibria -Common ion effect -Buffered solutions -Titrations and pH curves Acid base indicators Solubility equilibria Complex equilibria

15.1 Solutions of acids and bases containing a common ion

- What happens when a salt with the anion of a weak acid is added to that acid?
- Adding of NaF salt to a solution of HF (Ka = 7.2X10⁻⁴)
- NaF(s) \longrightarrow Na⁺(aq) + F⁻(aq) HF(aq) \rightleftharpoons H⁺(aq) + F⁻(aq)

It reverses the dissociation of the acid.
It Lowers the percent dissociation of the acid.

The same principle applies to salts with the cation of a weak base.
Adding NH4Cl to a solution of NH₃
NH₄Cl(s) NH₄+(aq) + Cl⁻(aq) NH₃(aq) + H₂O NH₄+(aq) + OH⁻(aq)

 When NH₄⁺ is added the equilibrium will shift to this direction

Adding NaCl(aq) shifts equilibrium position to left

- The common ion effect is also important in solutions of polyprotic acids
- The production of protons by the first step would inhibit the succeeding dissociation steps that are expected to produce protons
 - $\begin{array}{cccc} H_2CO_3 & \longrightarrow & HCO_3^- + H^+ \\ HCO3^- & \longrightarrow & CO_3^{2-} + H^+ \end{array}$

Calculations involving acidic solutions containing common ions

 Calculate [H⁺] and the percent dissociation of HF in a solution containing 1.0M HF (Ka = 7.2X10⁻⁴) and 1.0M NaF.

	HF	H+(aq)	+ F⁻(aq)			
Initial	1.0M	0	1.0M			
Change	-X	+X	+X			
Equilib.	1.0- x	X	1.0 +x			
1.0-x ≈ 1.0; 1.0 +x ≈ 1.0						
$X = [H^+] = 7.2X10^{-4} M$						
% dissociation = (7.2X10 ⁻⁴ /1.0)X100 = 0.072%						

 $[H^+] = 2.7 \times 10^{-3} M$

% dissociation = $(2.7X10^{-2}/1.0) X100$ = 2.7%

Thus, % dissociation has decreased significantly in the presence of a common ion (0.0072% with 1.0 M NaF)

15.2 Buffered solutions

- A solution that resists a change in pH when either OH⁻ or H⁺ ions are added
- Either a weak acid and its salt or a weak base and its salt.
- Weak acid and its conjugate base or a weak base and its conjugate acid
- We can make a buffer of any pH by varying the concentrations of the acid and its salt.

What is the pH of a solution containing 0.30 *M* HCOOH and 0.52 *M* HCOONa?

Mixture of weak acid and conjugate base!

HCOOH (aq) \rightarrow H⁺ (aq) + HCOO⁻ (aq) Initial (M) 0.30 0.00 0.52 Change (M) -X +X+XEquilibrium (M) 0.30 - xx = 0.52 + xK_a for HCOOH = 1.8×10^{-4} $x = 1.038 \times 10^{-4}$ [H⁺] [HCOO⁻] pH = 3.98 $K_a =$ [HCOOH]

pH of a buffered solution

Calculate the pH of a solution that is 0.50 M HAc and 0.5 M NaAc (Ka = 1.8 x 10⁻⁵)

The major species in the solution are

Initia Concentratio	l n (mol/L)			Ec Concer	quilibrium ntration (mol/L)
$[HC_{2}H_{3}O_{2}]_{0} = 0.50$ $[C_{2}H_{3}O_{2}^{-}]_{0} = 0.50$ $[H^{+}]_{0} \approx 0$		x mol/L of HC ₂ H ₃ O ₂ dissociates to reach equilibrium		$[HC_{2}H_{3}O_{2}] = 0.50 - [C_{2}H_{3}O_{2}^{-}] = 0.50 + [H^{+}] = x$	
The correspondi	ng ICE table is:				
Initial: Change: Equilibrium:	$HC_{2}H_{3}\Theta_{2}(aq)$ 0.50 $-x$ $0.50 - x$	<u></u>	$H^{+}(aq)$ ≈ 0 $+x$ x	. +	$C_{2}H_{3}O_{2}^{-}(aq)$ 0.50 +x 0.50 + x

$$K_{a} = 1.8 \times 10^{-5} = \frac{[\text{H}^{+}][\text{C}_{2}\text{H}_{3}\text{O}_{2}^{-}]}{[\text{H}\text{C}_{2}\text{H}_{3}\text{O}_{2}]} = \frac{(x)(0.50 + x)}{0.50 - x} \approx \frac{(x)(0.50)}{0.50}$$

and $x \approx 1.8 \times 10^{-5}$
The approximations are valid (by the 5% rule), so
 $[\text{H}^{+}] = x = 1.8 \times 10^{-5} M$ and $\text{pH} = 4.74$

Calculating pH after adding a strong acid or base

Do the stoichiometry first.
A strong base will take protons from the weak acid reducing [HA]₀
A strong acid will add its proton to the anion of the salt reducing [A⁻]₀
Then do the equilibrium problem.

Calculating pH changes in buffered solutions

- Calculate the change in pH that occurs when 0.010 mole solid NaOH is added to 1.0 liter of a buffered solution of 0.50M HCH₃CO₂ and 0.50M NaC₂H₃O₂. Compare this pH change with that occurs when 0.010 mol solid NaOH is added to 1.0 L of water.
- The major species in the solution before any reaction takes place are:

 $HC_2H_3O_2$, Na^+ , $C_2H_3O_2^-$, OH^- , and H_2O_2 .

 The best source of protons is HCH₃CO₂; these protons will react with OH⁻ from NaOH

 $OH^- + HC_2H_3O_2 \longrightarrow H_2O + C_2H_3O_2^-$

1. The stoichiometry problem. The stoichiometry for the reaction is shown below.

	$HC_2H_3O_2$	$+$ OH^-	\longrightarrow	$C_2H_3O_2^-$	+-	H_2O
Before	$1.0 L \times 0.50 M$	0.010 mol		$1.0 L \times 0.50 M$		
reaction:	= 0.50 mol			= 0.50 mol		
After	0.50 - 0.010	0.010 - 0.010		0.50 + 0.010		
reaction:	= 0.49 mol	= 0 mol		= 0.51 mol		

Note that 0.010 mol $HC_2H_3O_2$ has been converted to 0.010 mol $C_2H_3O_2^-$ by the added OH^- .

2. The equilibrium problem. After the reaction between OH^- and $HC_2H_3O_2$ is complete, the major species in solution are

 $HC_2H_3O_2$, Na^+ , $C_2H_3O_2$, and H_2O

The dominant equilibrium involves the dissociation of acetic acid.

Initi Chai Equi	al: nge: ilibrium:	$HC_{2}H_{3}O_{2}(aq)$ 0.49 -x 0.49 - x	~~~``	$H^+(aq)$ 0 $+x$ x	+	$C_2H_3O_2^{-}(a)$ 0.51 +x 0.51 + x
<i>K</i> _a =	= 1.8 × 1	$0^{-5} = \frac{[\mathrm{H}^+][\mathrm{C}_2]}{[\mathrm{H}\mathrm{C}_2]}$ $x \approx x$	$\begin{bmatrix} 2_2 H_3 O_2^{-1} \\ H_3 O_2 \end{bmatrix}$ = 1.7 × 1	$=\frac{(x)(0.51)}{0.49}$	$\frac{x}{x} \approx \frac{1}{x}$	$\frac{(x)(0.51)}{0.49}$
The	approxima	ations are value $[H^+] = x =$	d (by the = 1.7×1	5% rule), so 0^{-5} and	o 1 pl	H = 4.76
	The chan solution is the	ge in pH produced by en 4.76 — ↑ New solution (y the addition 4.74 ↑ Original solutior	of 0.01 mol OH = $+0.02$	to this bu	ffere

Now compare this with what happens when 0.01 mol solid NaOH is added to 1.0 L water to give 0.01 *M* NaOH. In this case $[OH^-] = 0.01 M$ and

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}} = 1.0 \times 10^{-12}$$

pH = 12.00³

Thus the change in pH is

$$\begin{array}{cccc}
12.00 & - & 7.00 \\
\uparrow & & \uparrow \\
\text{New solution} & \text{Pure water}
\end{array} = +5.00$$

zđ

The increase is 5.00 pH units. Note how well the buffered solution resists a change in pH as compared with pure water.

Buffered Solution Characteristics

- Buffers contain relatively large amounts of weak acid and corresponding conjugate base.
- Added H⁺ reacts to completion with the weak base.
- Added OH⁻ reacts to completion with the weak acid.
- The pH is determined by the ratio of the concentrations of the weak acid and its conjugate base.

Buffering: How does it work? Suppose a buffered solution contains relatively large quantities of an acid HA and its conjugate base A-. •When hydroxide ions are added to the solution, since the weak acid represents the best source of protons, the following, reaction occurs: $OH^{-} + HA$ $A^- + H_2O$ The net result is that OH⁻ ions are not allowed to accumulate but are replaced by A⁻ ions.

How does pH of the buffered solution stay stable?

$$Ka = \frac{[H^+][A^-]}{[HA]}$$

pH is determined By this ratio

So,
$$[H^+] = ka \frac{[HA]}{[A^-]}$$

$HA + OH^- \longrightarrow H_2O + A^-$

 When OH⁻ ions are added, HA is converted to A⁻, and the ratio [HA]/[A⁻] decreases.

 However, if the amounts of HA and A⁻ originally present are very large compared with the amount of OH⁻ added, the change in the [HA]/[A⁻I ratio will be small.

$$\frac{[\text{HA}]}{[\text{A}^-]} = \frac{0.50}{0.50} = 1.0 \quad \text{Initially}$$
$$\frac{[\text{HA}]}{[\text{A}^-]} = \frac{0.49}{0.51} = 0.96 \quad \text{After adding 0.01 mol/L OF}$$

The change in the ratio $[HA]/[A^-]$ is very small. Thus the $[H^+]$ and the pH remain essentially constant.

General buffer equation: Henderson-Hasselbalch eq.

$$Ka = \frac{[H^+][A^-]}{[HA]}$$

So,
$$[H^+] = ka \frac{[HA]}{[A^-]}$$

$$-\log[H^+] = -\log(\frac{[HA]}{[A^-]})$$

$$pH = pKa - \log(\frac{[HA]}{[A^-]})$$

$$pH = pKa + \log(\frac{[A^-]}{[HA]}) \quad pH = pKa + \log(\frac{[base]}{[acid]})$$

Using Henderson-Hasselbach equation to calculate pH of a buffered solution

Calculate the pH of the following mixtures:
0.75 M lactic acid (HC₃H₅O₃) and 0.25 M sodium lactate (Ka = 1.4 x 10⁻⁴)

pH = pk_a + log
$$\left(\frac{[A^{-}]}{[HA]}\right)$$
 pH = -log 1.4 x 10⁻⁴ + log $\left(\frac{0.25}{0.75}\right)$
pH = pk_a + log $\left(\frac{[base]}{[acid]}\right)$ pH = **3.38**

Calculate the pH of the following mixture: 0.25 M NH₃ and 0.40 M NH₄Cl (Kb = 1.8 x 10⁻⁵) $pH = pk_a + log(\frac{[A^-]}{[HA]})$ $pH = pk_a + log(\frac{[base]}{[acid]})$

Adding strong acid to a buffered solution

• Calculate the pH of the solution that results when 0.10 M gaseous HCl is added to 1.0 L of the 0.25 M NH₃ and 0.40 M NH₄Cl. (Kb = 1.8×10^{-5})

Before any reaction occurs, the solution contains the following major species:

$$NH_2$$
, NH_4^+ , Cl^+ , H^+ , and H_2O

What reaction can occur? We know that H⁺ will not react with Cl⁻ to form HCl. In contrast to Cl⁻, the NH₃ molecule has a great affinity for protons (this is demonstrated by the fact that NH₄⁺ is such a weak acid [$K_a = 5.6 \times 10^{-10}$]). Thus NH₃ will react with H⁺ to form NH₄⁺:

 $\mathrm{NH}_{3}(aq) + \mathrm{H}^{+}(aq) \longrightarrow \mathrm{NH}_{4}^{+}(aq)$

COnsider the

The stoichiometry calculations for this process are shown below.

Before reaction:	NH_3 (1.0 L)(0.25 <i>M</i>) = 0.25 mol	+	H^+ 0.10 mol		NH_4^+ (1.0 L)(0.40 <i>M</i>) = 0.40 mol
			Limiting reactant		
After reaction:	0.25 - 0.10 = 0.15 mol		0		0.40 + 0.10 = 0.50 mol

After the reaction goes to completion, the solution contains the major species

$$NH_3$$
, NH_4^+ , CI^- , and H_2O

and

$$[\mathrm{NH}_3]_0 = \frac{0.15 \text{ mol}}{1.0 \text{ L}} = 0.15 M$$

$$[\mathrm{NH_4}^+]_0 = \frac{0.50 \text{ mol}}{1.0 \text{ L}} = 0.50 \text{ M}$$

We can use the Henderson-Hasselbalch equation, where

$$[Base] = [NH_3] \approx [NH_3]_0 = 0.15 M$$

[Acid] = [NH_4⁺] \approx [NH_4⁺]_0 = 0.50 M

Then

$$pH = pK_a + \log\left(\frac{[NH_3]}{[NH_4^+]}\right)$$
$$= 9.25 + \log\left(\frac{0.15 M}{0.50 M}\right) = 9.25 - 0.52 = 8.73$$

Note that the addition of HCl only slightly decreases the pH, as we would expect in a buffered solution.

15.3 Buffering Capacity $pH = pk_a + log(\frac{[A^{-}]}{[HA]})$

 The pH of a buffered solution is determined by the ratio

- As long as this doesn't change much the pH won't change much.
- The more concentrated these two are the more H⁺ and OH⁻ the solution will be able to absorb.
- Larger concentrations bigger buffer capacity.

Buffering Capacity

Buffering capacity

it represents the amount of protons or hydroxide ions the buffer can absorb without a significant change in pH

Buffering Capacity

 Calculate the change in pH that occurs when 0.010 mol of HCl(g) is added to 1.0L of each of the following:

- 5.00 M HAc and 5.00 M NaAc
- 0.050 M HAc and 0.050 M NaAc
 Ka= 1.8x10⁻⁵

0.01 mol H⁺ is added to 1.0 L of each

Solution	$(\frac{[C_2H_3O_2^-]}{[HC_2H_3O_2]}) \text{ orig}$	$(\frac{[C_2H_3O_2]}{[HC_2H_3O_2]})$ new	Change	% Change
Α	$\frac{5.00M}{5.00M} = 1.00$	$\frac{4.99M}{5.01M} = 0.996$	1.00→0.996	Neglig.
B	$\frac{0.050M}{0.050M} = 1.0$	$\frac{0.04M}{0.06M} = 0.67$	1.0→ 0.67	Signif.

Much higher buffer capacity

Buffering Capacity

- pH in both solutions is 4.74
- <u>pH of solution A</u> after addition of HCl is <u>4.74</u>; NO CHANGE
- <u>pH of solution B</u> after addition of HCI is <u>4.56</u>; THERE IS A REAL CHANGE
- A buffer with much larger quantities of buffering components has much higher buffering capacity

0.01 mol H⁺ is added to 1.0 L of each

Solution	$(\frac{[C_2H_3O_2^-]}{[HC_2H_3O_2]}) \text{ orig}$	$(\frac{[C_2H_3O_2]}{[HC_2H_3O_2]})$ new	Change	% Change
Α	$\frac{1.00M}{1.00M} = 1.00$	$\frac{0.99M}{1.01M} = 0.98$	1.00→ 0.98	2.00
В	$\frac{1.00M}{0.01M} = 100$	$\frac{0.99M}{0.02M} = 49.5$	100 → 49.5	50.5

Small changes in ratio

Large changes in ratio

Which solution has more buffering capacity?

- pH of Solution A
 Before After
 4.74 4.74
 - pH of Solution B
 Before After
 6.74 6.44
- •Large changes in the ratio [A-]/[HA] produce large changes in pH
- For most effective buffering large changes in the ratio should be avoided
Buffering Capacity

- The optimal buffering occurs when we have the ratio [A⁻]/[HA] = 1
 - This buffer is most resistant to change when H⁺ or OH⁻ ions are added
- This is true when [A⁻] = [HA]
 - That is when pH = pKa (since log1=0)
- Thus <u>pka</u> of the weak acid to be used in the buffer should be as close as possible to the <u>desired pH</u>

15.4 Titrations and pH curves

- Millimole (mmol) = 1/1000 mol
- Molarity = mmol/mL = mol/L
- # mmoles = volume (in mL) X Molarity
 - This makes calculations easier because we will rarely add Liters of solution.
- Titration is adding a solution of known concentration until the substance being tested is consumed.
 - This point is called the equivalence point (or End-point)
- Graph of pH vs. mL is a titration curve.

Strong acid - Strong Base Titrations

- Do the stoichiometry.
- There is no equilibrium .
- They both dissociate completely.
- **Case Study:**
- The titration of 50.0 mL of 0.200 M HNO₃ with 0.100 M NaOH. Calculate the pH at the following stages:
 - Before any NaOH is added
 - When 10 mL of NaOH has been added
 - When 20.0 mL of NaOH has been added
 - When 50.0mL of NaOH has been added
 - When 100.0 mL of NaOH has been added
 - When 200.0 mL has been added

Titration of weak acids with Strong bases

- There is an equilibrium.
- Do stoichiometry.
- Then do equilibrium.
- Titrate 50.0 mL of 0.10 M acetic acid (Ka = 1.8 x 10⁻⁵) with 0.10 M NaOH
- Calculate the pH at the following stages:
 - Before any NaOH is added
 - When 10 mL of NaOH has been added
 - When 25.0 mL of NaOH has been added
 - When 40.0mL of NaOH has been added
 - When 50.0 mL of NaOH has been added
 - When 60.0 mL NaOH has been added
 - When 50.0 mL of NaOH has been added

Titration of weak basis with Strong acid

- There is an equilibrium.
- Do stoichiometry.
- Then do equilibrium.
- Titrate 100.0 mL of 0.05 M NH3 (Kb = 1.8 x 10⁻⁵) with 0.10 M HCI
- Calculate the pH at the following stages:
 - Before any HCI is added
 - Before the equivalence point
 - At the equivalence point
 - Beyond the equivalence point

Titrations

In a *titration* a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

Equivalence point – the point at which the reaction is complete

Indicator – substance that changes color at the endpoint (hopefully close to the equivalence point)

Slowly add base to unknown acid UNTIL

The indicator changes color (pink)

Strong Acid-Strong Base Titrations

NaOH (aq) + HCI (aq) \longrightarrow H₂O (l) + NaCI (aq) OH⁻ (aq) + H⁺ (aq) \longrightarrow H₂O (l) 100% ionization! No equilibrium

Volume of NaOH added (mL)

Weak Acid-Strong Base Titrations

CH₃COOH (*aq*) + NaOH (*aq*) → CH₃COONa (*aq*) + H₂O (*l*) CH₃COOH (*aq*) + OH⁻ (*aq*) → CH₃COO⁻ (*aq*) + H₂O (*l*) At equivalence point (pH > 7):

 $CH_3COO^-(aq) + H_2O(l) \longrightarrow OH^-(aq) + CH_3COOH(aq)$

Strong Acid-Weak Base Titrations

 $HCI (aq) + NH_3 (aq) \longrightarrow NH_4CI (aq)$

 $H^+(aq) + NH_3(aq) \longrightarrow NH_4CI(aq)$

At equivalence point (pH < 7):

 $NH_4^+(aq) + H_2O(l) \longrightarrow NH_3(aq) + H^+(aq)$

Summary

- Strong acid and base just stoichiometry.
- Determine Ka, use for 0 mL base
- Weak acid before equivalence point
 - -Stoichiometry first
 - -Then Henderson-Hasselbach
- Weak acid at equivalence point Kb
- Weak base after equivalence leftover strong base.

Summary

Determine Ka, use for 0 mL acid. Weak base before equivalence point. -Stoichiometry first -Then Henderson-Hasselbach Weak base at equivalence point Ka. Weak base after equivalence leftover strong acid.

15.5 Acid-base Indicators

Weak acids that change color at a certain pH

- weak acid written, Hln, has a certain color when the proton is attached to the molecule and a different color when the proton is dissociated, In⁻.
 - HIn $H^+ + \ln^-$ colorlessred
- Equilibrium is controlled by pH
- End point is reached when the indicator changes color.

(Colorless acid form, HIn)

Indicators

- Since it is an equilibrium the color change is gradual.
- It is noticeable when the ratio of [In⁻]/[HI] or [HI]/[In⁻] is 1/10
- Since the Indicator is a weak acid, it has a K_a.
- pH the indicator changes at is.
- pH=pKa +log([In⁻]/[HI]) = pKa +log(1/10)
- pH=pKa 1 <u>on the way up</u>

Indicators

- pH=pKa + log([HI]/[In⁻]) = pKa + log(10)
- pH=pKa+1 on the way down
- Choose the indicator with a pKa 1 less than the pH at equivalence point if you are titrating with base.
- Choose the indicator with a pKa 1 greater than the pH at equivalence point if you are titrating with acid.

15.6 Solubility equilibria and solubility product

- If there is not much solid it will all dissolve.
- As more solid is added the solution will become saturated.
- The solid will precipitate as fast as it dissolves until Equilibrium is reached

Solubility Product/Solubility

 An example of dynamic equilibrium of slightly soluble compounds CaF₂(s) Ca²⁺(aq) + 2F⁻(aq)
 The equilibrium expression for this reaction is: Keq = Ksp = [Ca²⁺] [F⁻]²
 Ksp is called solubility product const ¹/₂ t or simply Solubility product

• Solubility = $s = [Ca^{2+}] = [F^{-}]$

Solubility Product/Solubility

For solids dissolving to form aqueous solutions.

• $\operatorname{Bi}_{2}S_{3}(s) \rightleftharpoons 2\operatorname{Bi}_{3}^{3+}(aq) + 3S^{2-}(aq)$ • $K_{sp} = [\operatorname{Bi}_{3}^{3+}]^{2}[S^{2-}]^{3}$ • Solubility = $s = \frac{1}{2}[\operatorname{Bi}_{3}^{3+}] = \frac{1}{3}[S^{2-}]$

Solubility Product/Solubility

- Solubility is not the same as solubility product.
- Solubility product is an equilibrium constant.
- It doesn't change except with temperature.
- Solubility is an equilibrium position for how much can dissolve.
- A common ion can change this.

Calculating K_{sp} from solubility

 The solubility of CuBr(s) = 2.0X10⁻⁴M at 25°C. Calculate Ksp

 Calculate Ksp for Bi₂S₃ththat has the solubility of 1.0X10⁻¹³ mol/L

• The solubility of Li_2CO_3 is 5.48 g/L. Molar mass of Li_2CO_3 is 73.88. (Molarity = $\frac{5.48g}{L} \times \frac{1molLi_2CO_3}{73.88g}$ = 7.4X10⁻²M)

Calculating Solubility from Ksp

- The solubility is determined by equilibrium.
- Its an equilibrium problem.
- Calculate the solubility of SrSO₄, with a Ksp of 3.2 x 10⁻⁷ in M and g/L.
- Calculate the solubility of Ag₂CrO₄, with a Ksp of 9.0 x 10⁻¹² in M and g/L.

Relative solubilities

- Ksp will only allow us to compare the solubility of solids that fall apart into the same number of ions.
- The bigger the Ksp of those the more soluble. This is applicable only when salts being compared produce same number of ions.,, and
 - Agl= $1.5X10^{-16}$ Cul= $5.0X10^{-12}$ CaSO₄= $6.1X10^{-5}$

Relative solubilities

 When salts produce different number of ions when dissolved in water, Ksp values cannot be compared directly to determine relative solubilities

- CuS Ksp = $8.5X10^{-45}$
- Ag2S Ksp = $1.6X10^{-49}$
- Bi_2S_3 Ksp = 1.1X10⁻⁷³

 $Bi_2S_3 > Ag_2S > CuS$ (opposite to the order of Ksp values

Common Ion Effect

- If we try to dissolve the solid in a solution with either the cation or anion already present less will dissolve.
- Calculate the solubility of Ag₂CrO₄, with a Ksp of 9.0 x 10⁻¹² in M and g/L in a solution of 0.10 M AgNO_{3.}
- Calculate the solubility of CaF₂, with a Ksp of 4.0 x 10⁻¹¹ in M and g/L in a solution of 0.025 M NaF

pH and solubility

- $Mg(OH)_2$ (s) \Longrightarrow $Mg^{2+}(aq) + OH^{-}(aq)$
- OH⁻ can be a common ion. Thus, addition of OH⁻ will affect the solubility of Mg(OH)₂
- Mg(OH)₂ is more soluble in acid.
- For other anions if they come from a weak acid they are more soluble in a acidic solution than in water.

• $CaC_2O_4 \longrightarrow Ca^{2+} + C_2O_4^{2-}$ • $H^+ + C_2O_4^{2-} \longrightarrow HC_2O_4^{-}$ • Reduces $C_2O_4^{2-}$ in acidic solution.

pH and Solubility

- AgCI(s) has same solubility in acidic or basic solutions?
- CI⁻ is coming from a strong acid and its solution is neutral.
- <u>CaCO</u>₃ dissolves in water that has some CO₂ dissolved in it. CO₂ will make the water acidic.

While this solution is dripping in the caves CO₂ escapes leading to an increase in the pH and a consequent decrease in solubility; thus, stalactites and stalagmites will be formed.

15.7 Precipitation and qualitative analysis

- $M_a X_b(s) \iff a M^{b+} + b X^{a-}$
- Ion Product, Q =[M⁺]^a[X⁻]^b
- If Q>Ksp a precipitate forms.
- If Q<Ksp No precipitate.</p>
- If Q = Ksp equilibrium.
- A solution of 750.0 mL of 4.00 x 10⁻³M Ce(NO₃)₃ is added to 300.0 mL of 2.00 x 10⁻²M KIO₃. Will Ce(IO₃)₃ (Ksp= 1.9 x
 10⁻¹⁰ M) precipitate and if so, what is the concentration of the ions?

[Ce³⁺] = 2.86 X 10⁻³ M [IO₃⁻] = 5.71X10⁻³ M Q = [Ce³⁺]₀ [IO³⁻]₀³ = 5.32X10⁻¹⁰ Q>Ksp, then Ce(IO₃)₃ will precipitate

- (# mmoles of Ce^{3+})₀ = 3.0
- # mmoles of $IO_3^- = 6.0$
- $Ce^{3+} + 3IO_3^- \longrightarrow Ce(IO_3)_3$ (s)
- # mmoles of Ce³⁺ left = 3-2 =1
- $[Ce^{3+}]$ left = 1/1050 = 9.5X10⁻⁴ M • $[IO_3^{-7}] = 1.2X10^{-3}$ M

• $Ce(IO_3)_3$ (s) \leftarrow Ce^{3+} + $3IO_3^{-1}$ S+9.5X10⁻⁴ 3S

Ksp = $(S+9.5X10^{-4}) (3S)^3 \approx 2.85X10^{-3} S^3 = 1.9X10^{-10}$

Selective Precipitations

- This property is used to separate and purify mixtures of metal ions in solutions.
- Add anion that will only precipitate <u>one or</u> certain metals at a time.
- S²⁻ of H₂S is basic, thus precipitation can be made effective by adjusting the pH
- $H_2S = H^+ + HS^-$ HS = H^+ + S^2-
- In acidic solution Hg²⁺, Cd²⁺, Bi³⁺, Cu²⁺, Sn⁴⁺ will precipitate.

Qualitative analysis

- Group I: insoluble chlorides
- GroupII: insoluble sulfides in acid solutions
- GroupIII: insoluble sulfides in basic solutions
- Group IV: insoluble carbonate
- Group V: Alkali metals and NH₄⁺ ions
Qualitative Analysis

Complex ion Equilibria

15.8 Equilibria involving complex ions

- A complex ion is a charged ion surrounded by ligands.
- Ligands are Lewis bases (molecules or ions) using their lone pair to stabilize the charged metal ions.
- Common ligands are NH₃, H₂O, Cl⁻,CN⁻
- Coordination number is the number of attached ligands.
- $Cu(NH_3)_4^{+2}$ has a coordination # of 4
- Most common coordination numbers are 6 and 4. Others are known

Equilibria involving complex ions

- Metal ions add ligands one at a time in steps
- The steps are characterized by an equilibrium constant called Formation constant or Stability constant, K₁, K₂, ...

$$Ag^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})^{+} \qquad K_{1} = 2.1 \times 10^{3}$$
$$Ag(NH_{3})^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})_{2}^{+} \qquad K_{2} = 8.2 \times 10^{3}$$

Example

 Consider a solution prepared by mixing 100.0 mL of 2.0 *M* NH₃ with 100.0 mL of 1.0 X 10⁻³ *M* AgNO₃.
Calculate the concnetration of Ag⁺, Ag(NH₃)⁺ and Ag(NH₃)²⁺ in the solution

• We are interested only in the following equilibria:

$$Ag^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})^{+} \qquad K_{1} = 2.1 \times 10^{3}$$
$$Ag(NH_{3})^{+} + NH_{3} \rightleftharpoons Ag(NH_{3})_{2}^{+} \qquad K_{2} = 8.2 \times 10^{3}$$

Initial concentrations:

$$[Ag^{+}]_{0} = \frac{(100.0 \text{ mL})(1.0 \times 10^{-3} M)}{(200.0 \text{ mL})} = 5.0 \times 10^{-4} M$$

Total volume
$$(100.0 \text{ mL})(2.0 M)$$

$$[NH_3]_0 = \frac{1.0 M}{(200.0 mL)} = 1.0 M$$

 Since both K₁ and K₂ are large, and since there is a large excess of NH₃, both reactions can be assumed to go essentially to completion.

 This is equivalent to writing the net reaction in the solution as follows:

Ag⁺ is required

We can safely assume that [Ag(NH₃)²⁺] is 5.0X10⁻⁴ M since its dissociation is very small

 Also [NH₃] is 1.0 M since the amount reacted is very small To calculate the equilibrium concentration of $Ag(NH_3)^+$, we use

$$K_2 = 8.2 \times 10^3 = \frac{[\text{Ag}(\text{NH}_3)_2^+]}{[\text{Ag}(\text{NH}_3)^+][\text{NH}_3]}$$

since $[Ag(NH_3)_2^+]$ and $[NH_3]$ are known. Rearranging and solving for $[Ag(NH_3)_2^+]$ give

$$[Ag(NH_3)^+] = \frac{[Ag(NH_3)_2^+]}{K_2[NH_3]} = \frac{5.0 \times 10^{-4}}{(8.2 \times 10^3)(1.0)} = 6.1 \times 10^{-8} M$$

Now the equilibrium concentration of Ag^+ can be calculated using K_1 :

$$K_{1} = 2.1 \times 10^{3} = \frac{[\text{Ag}(\text{NH}_{3})^{+}]}{[\text{Ag}^{+}][\text{NH}_{3}]} = \frac{6.1 \times 10^{-8}}{[\text{Ag}^{+}](1.0)}$$
$$[\text{Ag}^{+}] = \frac{6.1 \times 10^{-8}}{(2.1 \times 10^{3})(1.0)} = 2.9 \times 10^{-11} M$$

These values clearly support the conclusion that

 $[\operatorname{Ag}(\operatorname{NH}_3)_2^+] \ge [\operatorname{Ag}(\operatorname{NH}_3)^+] \ge [\operatorname{Ag}^+]$

