Chapter 13 Chemical Equilibrium

Topics

What is meant by equilibrium? Equilibrium conditions Equilibrium constant and law of mass action Equilibrium expressions involving pressures > Heterogeneous equilibria > Applications of equilibrium constant and solving equilibria problems Le Chatelier's Principle

Introduction Chemical Equilibrium

The state where the concentrations of all reactants and products remain constant with time.

Equilibrium is not static, but is a highly dynamic situation.

13.1 The Equilibrium Conditions Reactions are reversible > A + B > C + D (forward) > C + D \rightarrow A + B (reverse) > Initially there is only A and B so only the forward reaction is possible > As C and D build up, the reverse reaction speeds up while the forward reaction slows down. Eventually the rates are equal

The N204-NO2 Equilibrium System N204 g, Forward 2NO2 2) 2 NO2 3 Reverse N204 3 -> ZNOZ 3 N204 1.56 -PNO2 = NOZ Rate forward = Rate Reverse (Dynamic equilib.) Pressure (atm) N204 N204 = 0.22 --80 (S) J Time(s)

Equilibrium Measurements in the N204 -NO2 System at 100°C			
	Original P(atm)	Equilib P	(PNO2)2/PN204
{N204 NO2	1.00 0.00	0.22 1.56	11
IND2	0.00 1.00	0.07 0.86	11
[N204 NO2	1.00	0.42	11_2
Thus, For any equilibrium mixture of N204 & NO2, (PNO2) / PN204 = Constant at any given temp.			
	= K = E	quilibrium Con	nstant

(at a certain temp.) is independent of: 1. Initial Composition 2. Volume of the container 3. Total pressure at 100°C at Iso'c 110

Equilibrium conditions

- Rates of forward and reverse reactions are equal if temperature remains constant
- Concentrations are not equal.
- Factors affecting the equilibrium position of a reaction:
 - initial concentrations;
 - relative energies of reactants and products;
 - Relative degree of organization of reactants and products
 - > (Nature tends to achieve minimum energy and maximum disorder
- The concentrations of reactants or products do not change at equilibrium.

13.2 The equilibrium constant Law of Mass Action For any reaction $\rightarrow jA + kB \implies IC + mD$ \sim [C]^I[D]^m PRODUCTS^{power} [A]^j[B]^k REACTANTS^{power} > K is called the equilibrium constant. is how a reversible reaction is identified

Comments on Law of mass action

- K is constant regardless of the amounts of materials mixed initially
- Equilibrium concentrations will not always be the same but K is the same
- Each set of equilibrium concentrations in an equilibrium system is called equilibrium position
- There is only one K value for a given system but infinite number of equilibrium positions
- The law of mass action applies to solution and gaseous equilibria

Changing the chemical equation of an equilibrium system: Reciprocal rule

Multiplying the equation by a coefficient: Coefficient Rule

If we multiply the equation by a constant
njA + nkB ⇒ nlC + nmD
Then the equilibrium constant is
K' = [C]^{nl}[D]^{nm} = ([C]^l[D]^m)ⁿ = Kⁿ

 $\begin{array}{l} \searrow_{K'=1} & [C]^{n/}[D]^{nm} \\ & [A]^{nj}[B]^{nk} \end{array} = \frac{([C]^{l/}[D]^{m})^{n}}{([A]^{j}[B]^{k})^{n}} = \frac{(n)^{n}}{([A]^{l/}[B]^{k})^{n}} \end{array}$

Rules of Multiple Equibria

Reaction 3 = Reaction 1 + Reaction 2
SO₂(g) + 1/2O₂ \implies SO₃(g); K₁ = 2.2
NO₂(g) \implies NO(g) + 1/2O₂(g); K₂ = 4.0

K (Reaction 3) = K (reaction 1) X K (reaction 2)

Notes on Equilibrium Expressions

- The Equilibrium Expression for a reaction is the <u>reciprocal</u> of that for the reaction written in <u>reverse</u>.
- When the equation for a reaction is multiplied by n, the equilib expression changes as follows:
- (Equilib Expression) _{final} = (Equilib Expression _{initial})ⁿ
- Usually K is written without units

Calculation of K

 > $N_2 + 3H_2 \iff 3NH_3$

 > Initial
 At Equilibrium

 > $[N_2]_0 = 1.000 \text{ M}$ $[N_2] = 0.921 \text{ M}$

 > $[H_2]_0 = 1.000 \text{ M}$ $[H_2] = 0.763 \text{ M}$

 > $[NH_3]_0 = 0 \text{ M}$ $[NH_3] = 0.157 \text{ M}$

$$K = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

= **9.47X10**⁻³

Calculation of K

 $> N_2 + 3H_2 \longrightarrow 3NH_3$ > Initial **At Equilibrium** $[N_2] = 0.399 \text{ M}$ $> [N_2]_0 = 0 M$ $> [H_2]_0 = 0 M$ $[H_2] = 1.197 \text{ M}$ $> [NH_3]_0 = 1.000 M$ $[NH_3] = 0.157M$ > K is the same no matter what the amount of starting materials

Symbols used for equilibrium constant

- K = used when the quantities of reactants and products are expressed as concentrations. That is mol/L
- The symbol K_c is used in some books to express same value.
- K_p is used when the equilibrium involves gases and their quantities are expressed in partial pressures.

13.3 Equilibrium Expressions Involving Pressures

- Some reactions are involve gaseous materials
- For the sake of equilibria, the amounts of gases may be expressed as concentrations (mol/L) or pressures.
- > Relationships between P & conc.:
- PV = nRT
- ≻ P = (n/V)RT
- ≻ P = CRT
- C is a concentration in moles/Liter
- ≻ C = P/RT

Equilibrium and Pressure $2SO_2(g) + O_2(g) \implies 2SO_3(g)$ $K_{p=} \frac{(P_{SO3})^2}{(P_{SO2})^2 (P_{O2})}$ $K = K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2} [O_{2}]}$

General Equation for the relationship between K and K_p

$jA + kB \longrightarrow IC + mD$

 $K_{p} = (P_{C})^{j} (P_{D})^{m} = (C_{C} x RT)^{j} (C_{D} x RT)^{m}$ $(P_{A})^{j} (P_{B})^{k} (C_{A} x RT)^{j} (C_{B} x RT)^{k}$

 $K_{p} = (C_{C})^{I} (C_{D})^{m} x (RT)^{I+m}$

 $(C_A)^j (C_B)^k x (RT)^{j+k}$ $K_p = K (RT)^{(l+m)-(j+k)} = K (RT)^{\Delta n}$ $\Delta n = (l+m)-(j+k) = Change in moles of gas$ #moles of Products - #moles of reactants Homogeneous Equilibria
All reactants and products are in one phase, gases for example
K can be used in terms of either concentration or pressure.

13.4 Heterogeneous Equilibria

- If the reaction involves pure solids or pure liquids as well as gases, the concentration of the solid or the liquid doesn't change.
- As long as they are not used up they are left out of the equilibrium expression.
- > Thus, there is no term for L or S in "K" expression.
- However, the presence of <u>L or S</u> is a must for equilibrium to occur.

Example: Equilibrium expression for heterogeneous equilibria $H_2(g) + I_2(s) = 2HI(g)$ $K' = \frac{[HI]^2}{[H_2][I_2]}$

But the concentration of I₂ does not change.

$$K'[I_2] = \frac{[HI]^2}{[H_2]} = K$$

Comments on heterogeneous Equilibrium

- Position of equilibrium is independent of the amount of L or solid as long as some is present
- L and S should be pure otherwise they cannot be neglected because their concentrations change
- Gases enter K expression as their partial pressure
- Solvents do not enter the K expressions
- Species (ions or molecules) in water solution should enter the K expression as their molar concentrations
- > Example: $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$
 - $Kp = P_{CO2} \qquad K = [CO_2]$

13.5 Applications of the equilibrium Constant

- The magnitude of K helps prediction of the feasibility (extent or direction but not the speed) of the reaction
- K> 1; the reaction system consists mostly products (equilibrium mostly lies to the right)
 - Systems with very large K go mostly to completion
 - Systems with very small values of K do not occur to any significant extent

There is no relation between the value of K and the time to reach equilibrium (the rate of reaction)

> Time to reach equilibrium depends on E_a for reactants and products

Applications of the Equilibrium Constant The magnitude of K helps prediction of the feasibility of the reaction. (extent or direction of reaction)

* Qualitative Prediction of the Direction of Reactions $N_2 g + O_2 z_2 = 2NO_{g_1} k = \frac{(P_{NO})^2}{P_N x P_{O_2}} = 1 \times 10^{-10}$, very larg. $N_{2,3} + 3H_{2,9} \rightleftharpoons 2NH_{3,2}; K = \frac{(P_{NH_3})^2}{P_{1,1} \times (P_{1,1})^3} = 6X/6$ K is large Forward reaction is favored (almost Completely to Right) K is very Small; Reverse reaction is foured (almost completely to left) K is moderate ; Froducts & Reactants Coexist With call other is a must

The Reaction Quotient, Q (Quantitative prediction of direction of reaction) > Q Tells how the direction of a reaction will go to reach equilibrium > Q's are calculated the same as K's, but for a system not at equilibrium Q = [Products]^{coefficient} [Reactants] ^{coefficient} $aA(g) + bB(g) \longrightarrow cC(g) + dD(g)$ $Q = \frac{\left(P_C\right)^c X\left(P_D\right)^d}{\left(P_A\right)^a X\left(P_B\right)^b}$ Compare value of Q to that of K

What Q tells us?

➢ If Q<K</p> >Not enough products Equilibrium shifts to right; forward reaction is predominant ➢ If Q>K >Too many products Equilibrium shifts to left; reverse reaction is predominant > If Q=K system is at equilibrium; there is no further change

Direction of Reaction (Quantitative Estimation) (The Reaction Quotient, Q) The System: $aA_{(3)} + bB_{(3)} \rightleftharpoons cC_{(3)} + dD_{(3)}$ $k = (P_c)^c \times (P_D)^d$ (Pa)ax(Pa)b

a(Initial) Assume that the actual pressure ratio = Q $\therefore Q = (P_c) \times (P_b)^d$ P= equilibrium pressures (PA)ax(PB)b Peactual Pressures * K value is Fixed; Q can have values be tween

any value) 1) Q<K Forward reaction is predominant. (2) Q > kReverse reaction is predominant Q = K3.)

Example For the reaction $> N_2O_4(g) \longrightarrow 2NO_2(g)$ > K = 11 at 100°C > In an experiment 0.20 mol N_2O_4 , 0. 20 mol $NO_2(g)$ are mixed in 4.0 L flask. Which direction will the reaction proceed to reach equilibrium? $=\frac{(0.2/4)^2}{(0.2/4)}=0.05$ < K $Q = \frac{[NO_2]^2}{[N_2O_4]}$

Consider the System : N2049 = 2NO2 9; K=11 Predict the direction of reaction to reach equilibrium Starting with 0.20 mol N204 & 0.20 mol NO2 in 4.0. Containen

$$(P_{N_2O_4})_i = \frac{nRT}{V} = \frac{(0.20 \text{ mol} \times 0.0821 \text{ L.atm/mol})}{4.0 \text{ L}}$$

= 1.5 atm

$$Q = \frac{(P_{NO2})^2}{P_{N2}O_4} = \frac{(1.5)^2}{1.5} = 1.5$$

Calculating equilibrium partial pressures and concentrations
Calculation of Equilibrium Partial Pressures From the Equilibrium Constant K Example $k = 1 \times 10^{-30} = \frac{(P_{NO})^2}{P_{N_2} \times P_{O_2}} = \frac{(P_{NO})^2}{0.78 \times 0.21}$ $N_{2}(g) + O_{2}(g) \rightleftharpoons 2 NO (g); k = 1 \times 10^{-30}$ PN2= 0:78, Po2= 0.21 atm, PNO = ! $P_{N0} = \left[\left[1 \times 10^{-36} \right) \left(0.78 \times 0.21 \right]^{\frac{1}{2}} = \left(1.6 \times 10^{-31} \right)^{\frac{1}{2}} = 4 \times 10^{-16}$ 1.e., Essentially, there is no reaction How about if there is a reaction ?!!

Example Assuming, PNH3 = 3.0 atm 12.0 g NH4Cl, Pitce = 5.0 atm Calculate K for the equilibrium System NHUCIS NH3 g, + HCl g, Equilib 12.09 5.0 atm 3.0 atm K = P.NA3 × PHCl = (3.0) × (5.0) = 15

Example

Consider the equilibrium, $2HIg \rightleftharpoons H_2g + I_2g$ Originally, the system contains HI at a pressure of 1.00 atm at 520°C. PHz at equilib. is found to be 0.10 atm. Calculate: (a) PI, at equilib. ; (b) PHI at equilib. 2HI = H2 + I2 Initial 1.00 a.tm +× +× Change -2X Equilib 0.10 atm 0.10 atm 1.00-2. (0.6)

0.80 atm.

(C) Calculate K $k = \frac{P_{H_2} \times P_{T_2}}{(P_1 - 1)^2} = \frac{0.10 \times 0.10}{(0.80)^2} = \frac{0.016}{0.016}$ $(P_{HT})^2$ * Changes in partial pressures of Reactants and products are inter related through the Coefficients of the balanced quation. $\begin{array}{rrr} A + 2B \rightleftharpoons 3C \\ -x & -2x \end{array}$

Example 13.9

At a certain temperature a 1.00-L flask contained 0.298 mol PCl₃(g) and 8.70X10⁻³ mol PCl₅(g). After the system had reached equilibrium, 2.00X10⁻³ mol Cl₂(g) was found in the flask. Calculate the equilibrium conc. Of all species and the value of K

	PCI ₅	\rightarrow	PCl ₃ (g)	+	Cl ₂ (g)
Initial	8.70X10 ⁻³	mol	0.298 mc		0 mol
[] init Change	8.70X10 ⁻³ -x	Μ	0.298 M +x		0 M +X
Equilib	?		?	+2.0	0X10 ⁻³ M

K = ??

Example 13.10

Consider:
 CO (g) + H₂O(g) = CO₂(g)+ H₂(g)
 At 700K, K is 5.10. Calculate the equilibrium concentrations of all species if 1.00 mol of each component is mixed in 1.00
 L flask

	CO (g) ·	+ H ₂ O(g) <mark>-</mark>	CO ₂ (g)-	CO ₂ (g)+ H ₂ (g)		
Initial	1 mol	1 mol	1 mol	1mol		
[]	1mol/1L	1mol/1L	1mol/1L	1mol/1L		
Change	-X	-X	+X	+X		
Equilib	1-x	1-x	1+x	1+x		

$$K = \frac{(1+x)(1+x)}{(1-x)(1-x)} = \frac{(1+x)^2}{(1-x)^2} = 5.10$$

 $\frac{(1+x)}{(1-x)} = \sqrt{5.10}$

13.6 Solving Equilibrium Problems

- Given the starting concentrations and one equilibrium concentration.
- Use stoichiometry to figure out other concentrations and K.

Learn to create a table of initial and final conditions.

 Consider the following reaction at 600°C
 2SO₂(g) + O₂(g) 2SO₃(g)
 In a certain experiment 2.00 mol of SO₂,
 1.50 mol of O₂ and 3.00 mol of SO₃ were
 placed in a 1.00 L flask. At equilibrium 3.50
 mol SO₃ were found to be present.
 Calculate the equilibrium concentrations of
 O₂ and SO₂, K and K_P

 $\begin{array}{c|c} 2SO_{2}(g) + O_{2}(g) & \longleftarrow & 2SO_{3}(g) \\ \hline \text{Init} & 2.00 \text{ mol/L} & 1.50 \text{ mol/L} & 3.00 \text{ mol/L} \\ \hline \text{Change} & -2X & -X & +2X \\ \hline \text{Equilib} & & 3.50 \text{ mol/L} \end{array}$

For the system:

 N_2O_4 (g) $\rightleftharpoons 2NO_2$ (g) ; K = 11 at 100°C Starting with pure N_2O_4 at a pressure of 1.00 atm, what will be the equiliber partial pressures?

	N2O4	= 2 NO2 ; K=11
Initial, Po, atm	1.00	0.00
	N204	2 NO2 ; K=11
Initial, Po, atm	1.00	0.00
Change, DP, atm	-x	+2x
	N204 .	2 NO2 ; K=11
Initial, Po, atm	1.00	0.00
Change, DP, atm	-x	+2x
Equilib, Peg, atm	1-00 -X	2 X

422 $(2x)^{2}$ =_ 1.00-2 1.00 - X $4\chi^{2} + 11\chi - 11$ = 0 = - B ± VB2-4ac X Za - 3.52 × 0.78 01 X=

Example ! Consider the reaction, 2 HI $g = H_2 g + I_2 g$, $K = 0.1 \times 0.1$ $(0.8) = \times 7$ -At equilib., PHI = 0.80 atm, Pitz = PIz = 0.10 atm Suppose that, to this mixture, enough HI is added to raise its pressure temporarily to 1.00 atm. When equilib. is restored, What are PHI, PH2 and PI2?

2 HI B H2 (3, + I2 (3); K= PH2 P32 10 atm 0.10 atm (HI)2 Equilib. (1) 0.80 atm 0.10 atm 0.10 atm P. (atm) 1.00 0.10 0.10 pP(atm) - 2x + × + × Peg (atm) 1:00-2% 0.10+X 0.10+X

H2 (3) + I2 (9) ; K= PH2 P32 2 HI B -0.10 atm 0.10 atm (HI)2 Equilib. (1) 0.80 atm P. (atm) 1.00 0.10 0.10 DP (atm) - 2x + × + × Peg (atm) 1:00 - 2% 0,10+x 0.10+x $K = 0.016 = (0.10 + \chi)^2$ (1.00 - 2x)2 $\therefore 0.10 + x = (0.016)^{\frac{1}{2}} = 0.13 \Rightarrow x = 0.024$ 1.00-2× 0.95at PH2 = PI, = 0.10 + 0.024 = 0.12 atm j: PHI= 1.00-0.028= 1

What if equilibrium concentration is not given?

The size of K will determine what approach to take.

First let's look at the case of a LARGE value of K (>100).

Simplifying assumptions can be made.

Example

> $H_2(g) + I_2(g) = 2HI(g)$ K = 7.1 x 10² at 25°C

 Calculate the equilibrium conc. if a 5.00 L container initially contains 15.9 g of H₂ and 294 g of I₂.
 [H₂]₀ = (15.7g/2.02)/5.00 L = 1.56 M
 [I₂]₀ = (294g/253.8)/5.00L = 0.232 M
 [HI]₀ = 0

Q= 0<K so more product will be formed.

- Assumption: since K is large reaction will go to completion.
- Stoichiometry tells us I₂ is LR, it will be smallest at equilibrium
- Set up table of initial, change and equilibrium concentrations.

$H_2(g)$ $I_2(g)$ HI(g)initial1.56 M0.232 M0 Mchange-0.232-0.232+0.232X2Final1.3280+0.464

> (before the reverse reaction takes place)
 > When the reverse reaction takes place to achieve an equilibrium a decrease of 2x will take place in HI and an increase of x in each of H₂ and I₂ will take place
 > Thus final concentrations will be taken as the initials

H ₂ (g)	l ₂ (g)	2HI(g)
Initial 1.328	0	+0.464
Change +X	+X	-2X
Equilib 1.328+X	X	0.464-2X

Now plug these values into the equilibrium expression

K = $\frac{(0.464-2X)^2}{(1.328+X)(X)}$ > When we solve for X we get 2.8 x 10⁻⁴ **Can we eliminate X from the equation?**

 $K = (0.464^{-2}-X)2 = 7.1 \times 10^{2}$ (1.328 + X)(X)Since X is going to be small, we can ignore it in relation to 0.464 and 1.328 So we can rewrite the equation $>7.1 \times 10^2 = (0.464)^2$ (1.328)(X)This makes the algebra easy

> When we solve for X we get 2.8 x 10⁻⁴ > X was also without approximation 2.8 x 10⁻⁴ > So we can find the other concentrations $>I_2 = 2.8 \times 10^{-4} M$ $>H_2 = 1.328 \text{ M}$ ≻ HI = 0.464 M

Problems with small K

K< .01

For example

- For the reaction 2NOCI = 2NO +CI₂
 K= 1.6 x 10⁻⁵
- If 1.0 mol NOCI, is placed in 2.0L flask What are the equilibrium concentrations?
- Since there are no products exist intially, the system will move to the right to reach equilibrium
 [NOCI] 1.0 mol/2.01 0.50M
- > [NOCI]₀ = 1.0 mol/2.0L = 0.50M

	2NOCI	2NO	Cl ₂	
Initial	0.50M	0	0	
Change	-2x	+2x	+ X	
Equilib.	0.50-2x	2 x	X	
> K = 1.6X10 ⁻⁵ = $\frac{[NO]^2[Cl_2]}{[NOCl]^2} = \frac{(2x)^2(x)}{(0.50-2x)^2}$ > This equation is complicated; an approximation is needed				

> K = 1.6X10⁻⁵ = $\frac{[NO]^2[Cl_2]}{[NOCl]^2} = \frac{(2x)^2(x)}{(0.50-2x)^2}$

$> 0.50-2x \approx 0.50$

$$\frac{(2x^2)(x)}{(0.50)^2} = \frac{4x^3}{(0.50)^2}$$

$= K = 1.6X10^{-5}$

-2 -2

13.7 Le Chatelier's Principle if a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change. > If a stress is applied to a system at equilibrium, the position of the equilibrium will shift to reduce the stress.

> There are 3 Types of stress

External conditions that cause a disturbance to a chemical equilibrium

- Adding or removing reactants or products
- Changing the volume (or pressure) of the system
- Changing the temperature

The effect of a change in concentration of reactants and/or products

>The system will shift away from the added component

> Adding product makes Q>K < ____</p> Removing reactant makes Q>K <</p> > Adding reactant makes Q<K</p> Removing product makes Q<K —>> knowing the effect on Q, will tell you the direction of the shift Adding or removing liquids or solids does not affect the equilibrium

The effect of a Change in Pressure

>The pressure changes as a result of: >Adding or removing gaseous reactant or product >Adding an inert gas Changing the volume of the container >Adding inert gas does not affect the equilibrium position; conc. or P will not change. > By reducing the volume of the container, the system will move in the direction that reduces its volume.

The effect of a Change in Pressure

The system will respond to the decrease in volume by decreasing the total number of gaseous molecules in the system.

Thus V α n

At constant temp and pressure the volume of a gas is directly proportional to the number of moles of gas present

Changes in Volume N2040 = 2 NO2 (9) NO2 N204 Original equilib. Equilib. disturbel Equilib. re-established (# molecules/unit volume) (# molecules/Unit vol increases decreases The When (V) is decreased : Equilibrium will shift to the direction in which number of molecules decreases 1.e., Reverse reaction is enhanced

* When the volume of an equilibrium System is decreased, the reaction takes place in the direction that decreases the # moles of gas. # Vice Versa

Effect of a change in volume upon the position of gaseous equilibrium System Dngag Vincreases Vdecrease N2 04 (9) = 2NO2 (9) +1 6 SO2 3,+2023,= SO3 3 -1 N2 3, +3H2 3 2 2NH3 3) -2 -C 3, + H2 0 2, 2 C 3, + H2 2, +1 E N2 3 + 02 3 2 2 NO 3 0 0 0 $2CO_{2,3} \rightleftharpoons 2CO_{2,+}O_{2,3}$ + / \rightarrow <- $H_2g + I_2g \Rightarrow 2H_2g$ 0 0 0 H23+12 5 2 2 H1 3 +1 <---

Effect of Changes in Pressure Same as in Volume effect; on a Condition that a change in volume must associate the change in P. Addition of an inert gas: It affects P but does not affect equilib. as long as the container Volume is not changed. Concentrations or partial pressures of reactants or products do not change.

Change in Temperature > Affects the <u>rates</u> of both the forward and reverse reactions. > changes the equilibrium constant. > The direction of the shift depends on whether it is exo- or endothermic
Exothermic

AH<0
Releases heat
Think of heat as a product
Raising temperature push toward reactants.
Shifts to left.

Endothermic

≻∆H>0 Heat is added to the system >Think of heat as a reactant Raising temperature push toward products. > Shifts to right.

Changes in Temperature Changes in <u>Conc.</u>, Volume, or total P Cause shift in equilibe without changing the value of K the position of Changes in T: Cause a shift in Lequilib. in addition to changing the Value of K Shifting the equilibrium Endo N204 (9) = 2NO2 (9) ; DH = +58.2 KJ * (Increasing T favors the Endothermic reactions) Exo N2 (9) + 3H2 (9) = 2 NH3 (9); AH = -92.4 * (Decreasing the T favors the Exothermic reactions)

Learning Outcomes

- Explain how dies a system reach equilibrium.
- Explain how does equilibrium work as a dynamic process.
- Write the equilibrium constant expression according to the law of mass action
- Write K for the reversible reaction; for a reaction whose coefficients are multiplied by any integer; and for a reaction that represents the summation of more than one reaction

- Relating Kp to K (Kc)
- Write equilibrium expression for reactions involving heterogeneous equilibria.
- Explain what is meant by equilibrium position.
- Predict the direction of equilibrium position from the value of the Quotient, Q by comparing Q with K
- Solve equilibria problems
- Apply Le Chaetelier's principle