Chapter 7 Electron Configuration and the Periodic Table

Topics

- Development of the periodic table
- The modern periodic table
- Effective nuclear charge
- Periodic trends in properties of elements
- Electron configuration of ions
- Ionic radius
- Periodic trends in chemical properties of the main group elements (Self study)

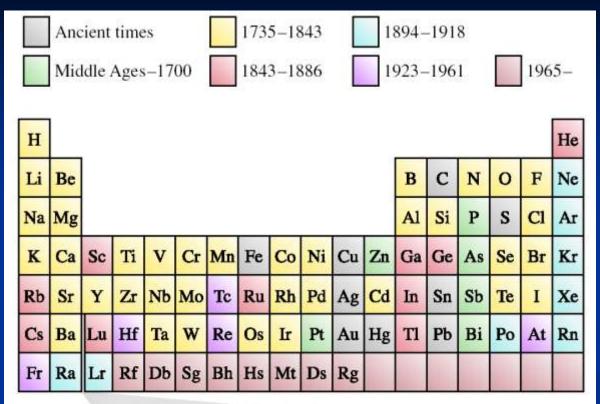
7.1 Development of the Periodic Table

1864 - John Newlands - Law of Octaves-

- every 8th element had similar properties when arranged by atomic masses (not true past Ca)
- 1869 Dmitri Mendeleev & Lothar Meyer independently proposed idea of periodicity (repetition of properties)
 - They didn't know much about atom.
 - Elements were arranged in columns by similar properties.
 - Properties of missing elements were predicted.

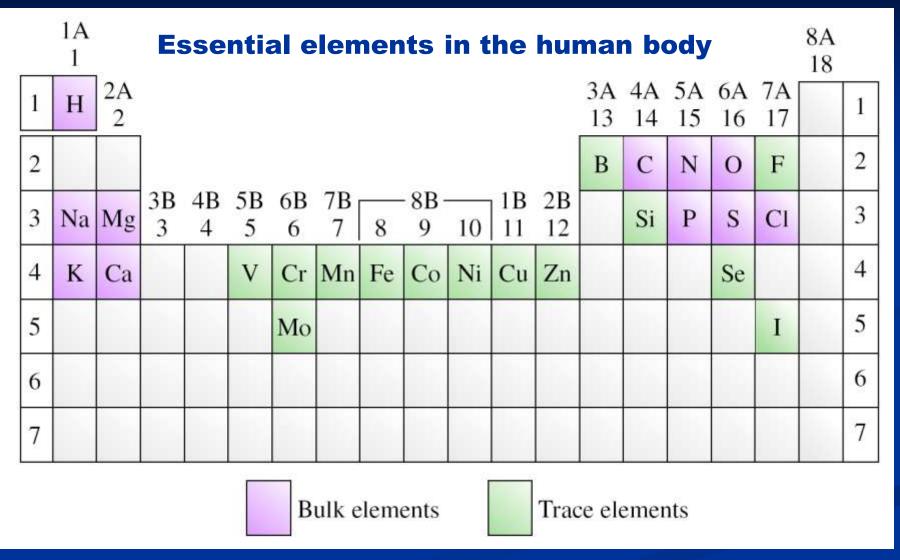
Mendeleev

- Grouped elements (66) according to properties
- Predicted properties for elements not yet discovered
- Though a good model, Mendeleev could not explain inconsistencies, for instance, all elements were not in order according to atomic mass


Mendeleev's Early Periodic Table, Published in 1872

z	GRUPPE 1.	GRUPPE II.	GRUPPE III.	GRUPPE IV.	GRUPPE V.	GRUPPE VI.	GRUPPE VII.	GRUPPE VIII.
REIHEN	-	—	-	RH4	RH ³	RH ²	RH	
RE	R20	RO	R ² O ³	RO ²	R205	RO ³	R207	RO4
1	H=1							
2	Li= 7	Be = 9,4	B = 11	C=12	N=14	0=16	F = 19	
3	Na = 23	Mg = 24	A1 = 27,3	Si = 28	P = 31	S=32	C1 = 35,5	
4	K = 39	Ca = 40	-= 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63.
5	(Cu = 63)	Zn = 65	-= 68	-= 72	AS = 75	Se = 78	Br = 80	
6	R6 = 85	Sr = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	-= 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
7	(Ag = 108)	Cd = 112	In=113	Sn=118	SE=122	Te=125	J=127	
8	CS = 133	Ba = 137	?Di=138	?Ce = 140	-	-	-	
9	(-)	-	-	-	_	-	-	
10	-	-	?Er = 178	? La = 180	Ta = 182	W=184	-	0s = 195, Ir = 197, Pt = 198, Au = 19
11	(Au=199)	Hg = 200	TI = 204	Pb = 207	Bi = 208	-	-	
12	_	-	_	Th = 231	-	U=240	-	

1913 - Henry Moseley explained the discrepancy
 He noticed that the frequency of X-rays generated by bombarding an element with high energy electrons increases with increasing atomic mass with exceptions like Ar and K


- He discovered a correlation between atomic number and frequency of X rays
- Then he realized that elements should be arranged in order of increasing atomic number (# of protons = # electrons)rather than atomic mass.

Periodic Table by Dates of Discovery

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Essential Elements in the Human Body

The Modern Periodic Table & Valence electron configuration

1A																	8A
1 H																	2 He
$\frac{\mathbf{H}}{1s^1}$	2A											3A	4A	5A	6A	7A	$1s^2$
3 Li 2s ¹	4	6										5 B	6 C	7	8	9 F	10 Ne 2s ² 2p ⁶
Li	Be										/		С	N			Ne
	$2s^2$										1	$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
11 Na	12											13	14	15 P	16 S	17	
Na	Mg	0.000									0720000	Al	Si			CI	Ar
351	$3s^2$	3B	4B	5B	6B	7B		— 8B —	î	1B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
19 K	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36 Kr 4s ² 4p ⁶
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
451	4s ²	$3d^{1}4s^{2}$	$3d^24s^2$	$3d^{3}4s^{2}$	3d ⁵ 4s ¹	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^1$	$3d^{10}4s^2$	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^{2}4p^{5}$	$4s^24p^6$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
37 Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
5s ¹	5s ²	$4d^{1}5s^{2}$	$4d^{2}5s^{2}$	$4d^{4}5s^{1}$	$4d^{5}5s^{1}$	$4d^{5}5s^{2}$	$4d^{7}5s^{1}$	$4d^{8}5s^{1}$	$4d^{10}$	$4d^{10}5s^1$	$4d^{10}5s^2$	$5s^25p^1$	$5s^25p^2$	$5s^{2}5p^{3}$	$5s^{2}5p^{4}$	$5s^{2}5p^{5}$	54 Xe 5s ² 5p ⁶
55	56	57	72	73	74	75	76	77 Ir $5d^{7}6s^{2}$	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	$\frac{\mathrm{Hf}}{5d^26s^2}$	$Ta 5d^36s^2$	$\frac{W}{5d^46s^2}$	Re 5d ⁵ 6s ²	Os	Ir	Pt	Au	Hg	$ \begin{array}{c} 81 \\ \mathbf{TI} \\ 6s^2 6p^1 \end{array} $	82 Pb	83 Bi 6s ² 6p ³	Po	At	86 Rn 6s ² 6p ⁶
55 Cs 6s ¹	6s ²	$5d^{1}6s^{2}$	$5d^26s^2$	5d ³ 6s ²	$5d^46s^2$	$5d^{5}6s^{2}$	$Os 5d^66s^2$	$5d^{7}6s^{2}$	$5d^{9}6s^{1}$	$5d^{10}6s^1$	$5d^{10}6s^2$	$6s^26p^1$	$6s^{2}6p^{2}$	$6s^{2}6p^{3}$	$6s^{2}6p^{4}$	$6s^{2}6p^{5}$	6s ² 6p ⁶
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
87 Fr	Ra	†Ac	$\frac{\mathbf{Rf}}{6d^27s^2}$	Db	$\frac{Sg}{6d^47s^2}$	Bh	Hs	Mt	Ds			Unknown		Unknown			
751	7s ²	$6d^{1}7s^{2}$	$6d^27s^2$	$6d^{3}7s^{2}$	$6d^47s^2$				Sector Sector								l

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
10	$4f^{2}6s^{2}$	$4f^{3}6s^{2}$	$4f^46s^2$	$4f^{5}6s^{2}$	$4f^{0}6s^{2}$	4f'6s2	$4f^{7}5d^{1}6s^{2}$	4f96s2	$4f^{10}6s^2$	$4f^{11}6s^2$	$4f^{12}6s^2$	4f136s2	4f146s2	$4f^{14}5d^{1}6s^{2}$
Ŷ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	$6d^27s^2$	5f26d17s2	5f36d17s2	$5f^46d^17s^2$	5f67s2	5f77s2	5f ⁷ 6d ¹ 7s ²	5f97s2	$5f^{10}7s^2$	$5f^{11}7s^2$	$5f^{12}7s^2$	5f137s2	5f147s2	$5f^{14}6d^{1}7s^{2}$

7.2 The Modern Periodic Table Classification of Elements Main group elements - "representative" elements" Group 1A-7A ■ Noble gases - Group 8A all have *ns²np⁶* configuration(exception-He) Transition elements - 1B, 3B - 8B "dblock" Lanthanides/actinides - "f-block"

Classification of Elements

Elements in which the orbitals being filled in the aufbau process are either *s* or *p* orbitals of the outermost shell are called main group (Representative) elements

"A" group designation on the periodic table

The first 20 elements are all main group elements

Transition Elements

In transition elements, the sublevel (shell) being filled in the aufbau process is in an inner principal shell (d or f)

<u>d-Block</u> transition elements: Electrons enter the d-sublevels (incomplete d-subshells <u>f-Block</u> transition elements: *d* sublevels are completely filled. Electrons enter f-sublevels

Lanthanides: electrons fill 4f subleves Actinides: electrons fill 5f sublevels

		sentative ments	-			<i>d</i> -7	Fransitio	n Eleme	ents					Represe	entative	Element	s	Noble Gases
	1 1A ns ¹	Group numbers																18 8A ns ² np ⁶
	1 H 1s ¹	2 2A ns ²											13 3A ns ² np ¹	4A $h^{14}A$ $h^{2}h^{2}h^{2}$	15 5A ns ² np ³	$\frac{16}{6A}_{ns^2np^4}$	17 7A _{ns²np⁵}	2 He 1s ²
2	3 Li 2s ¹	4 Be 2s ²											5 B 2s ² 2p ¹	6 C 2s ² 2p ²	7 N 2s ² 2p ³	8 O 2s ² 2p ⁴	9 F 2s ² 2p ⁵	10 Ne 2s ³ 2p ⁶
3	11 Na 3s1	12 Mg 3s ²	3	4	5	6	7	8	9	10	П	12	13 Al 3s ² 3p ¹	14 Si _{3s²3p²}	15 P 3s ² 3p ³	$16 \\ S \\ 3s^{2}3p^{4}$	17 Cl _{3s²3p⁵}	18 Ar _{3s²3p⁶}
ţ	19 K 4s ¹	20 Ca 45 ²	21 Sc 4s ² 3d ¹	22 Ti 4s ² 3d ²	23 V 4s ² 3d ³	24 Cr 4s ¹³ d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ^{23d6}	27 Co 4s ² 3d ⁷	28 Ni 4s ^{23d} ⁸	29 Cu _{4s13d10}	30 Zn 4x ² 3d ¹⁰	31 Ga 4s ^{24p1}	32 Ge 4s ^{24p²}	33 As _{4s²4p³}	34 Se _{4s²4p⁴}	35 Br _{4s^{24p5}}	36 Kr 4s ^{24p6}
5	37 Rb 5s1	38 Sr 5s ²	39 Y 55 ^{24d1}	40 Zr 5s ^{24d²}	41 Nb 5s14d ⁴	42 Mo 5s ¹ 4d ⁵	43 Tc 5s ^{14d6}	44 Ru 5314d7	45 Rh 5s ^{14d8}	46 Pd 4d ¹⁰	47 Ag 5s14d10	48 Cd 5s ² 4d ¹⁰	49 In 5s ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 I 5s ² 5p ⁵	54 Xe 5x ² 5p ⁶
5	55 Cs 651	56 Ba 6x ²	57 La* 6s ² 5d ¹	72 Hf 4f ^{146s25d2}	73 Ta 6s ² 5d ³	74 W 6s ² 5d ⁴	75 Re 6s25d5	76 Os 6s ² 5d ⁵	77 Ir 6s ² 5d ⁷	78 Pt 6x15d9	79 Au 6s ^{15d10}	80 Hg 6s ² 5d ¹⁰	81 Tl 6s ^{26p1}	82 Pb _{6s²6p²}	83 Bi _{6s²6p³}	84 Po _{6s²6p⁴}	85 At 6s ² 6p ⁵	86 Rn 6s ^{26p6}
7	87 Fr 7s1	88 Ra 7s ²	89 Ac** 7s ² 6d ¹	104 Rf 7s26d2	105 Db 7s26d3	106 Sg 7s ² 6d ⁴	107 Bh 7s ³ 6d ⁵	108 Hs 7s ² 6d ⁶	109 Mt 7s ^{26d7}	110 Ds 7s ² 6d ⁸	111 Rg 7s16d10	112 Uub 7x26d10	113 Uut 7s26d107p1	114 Uuq 7s26d107p2	115 Uup 7s ² 6d ^{107p3}			

*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	_{6s²4f¹5d¹}	6s ^{24f35d0}	6s ^{24f45d0}	6s ^{24f 55d0}	6s24f65d0	6s ² 4f ⁷ 5d ⁰	6s ² 4f ⁷ 5d ¹	6s ^{24f95d0}	6s ^{24/105d0}	6s ^{24f115d0}	6s ² 4/ ¹² 5d ⁰	6s ^{24f135d0}	_{6y²4f¹⁴5d⁰}	_{65²4f¹⁴5d¹}
**Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	7 <i>s</i> ² 5f ⁰ 6d ²	7 <i>s</i> 25f26d1	7s ² 5f ³ 6d ¹	7x25f46d1	7s25p66d0	7s ² 5f ⁷ 6d ⁰	7s ² 5f ⁷ 6d ¹	7x25f96d0	7 <i>x</i> ² 5/ ¹⁰ 6d ⁰	7s ² 5/ ¹¹ 6d ⁰	7x ² 5y ¹² 6xd ⁰	7x25f136d0	7x25f146a0	7x ^{25f146d1}

f-Transition Elements

Periodic Table Colored Coded By Main Classifications

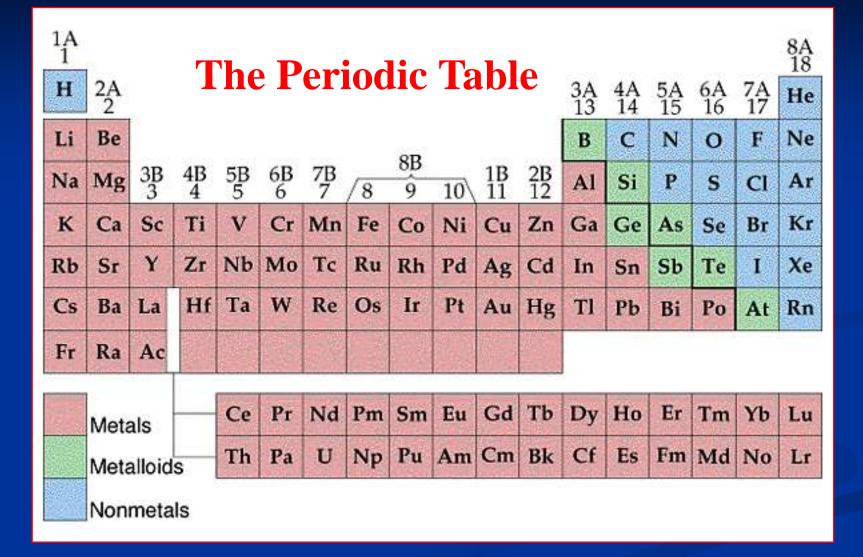

1	1A 1 H	2A	ĺ.		Tra		ies Siti					Its	3A	4A	5A		7A	8A 18 He	1
2	Li	2 Be								-		V	13 B	14 C	15 N	16 0	17 F	Ne	2
3	Na	Mg	3B 3	4B 4	5B 5	6B 6	7 B 7	8	- 8B 9	10	1B 11	2B 12	A 1	Si	Р	s	Cl	Ar	3
4	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	4
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	5
6	Cs	Ba	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn	6
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg								7
																	_		
			6	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	УЪ	6	
			7	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	7	

TABLE 7.1	Electro	n Configurations of Group	TA and Gro	oup 2A Elements
	Group	1A	Group	2A
1	Li	$[\text{He}]2s^1$	Be	[He] $2s^2$
1	Na	$[Ne]3s^1$	Mg	$[Ne]3s^2$
1	К	$[Ar]4s^1$	Ca	$[Ar]4s^2$
]	Rb	[Kr]5 <i>s</i> ¹	Sr	$[Kr]5s^2$
(Cs	[Xe]6 <i>s</i> ¹	Ba	$[Xe]6s^2$
]	Fr	[Rn]7 <i>s</i> ¹	Ra	$[Rn]7s^2$

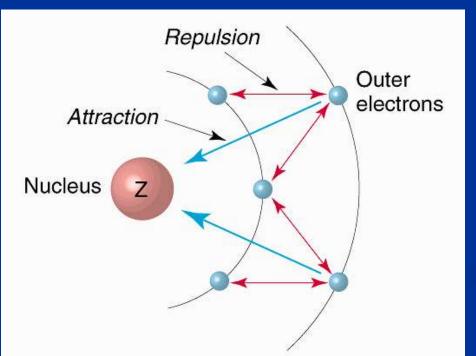
Predicting properties

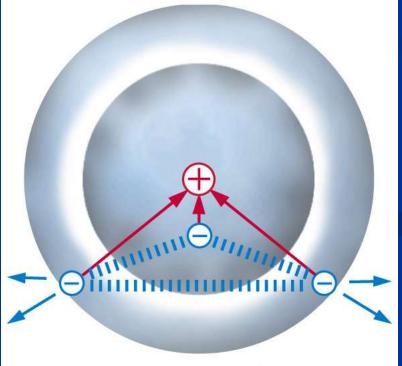
- Valence electrons are the outermost electrons and are involved in bonding
- Similarity of valence electron configurations help predict chemical properties
- Group 1A, 2A and 8A all have similar properties to other members of their respective group

- Groups 3A 7A show considerable variation among properties from metallic to nonmetallic
- Transition metals do not always exhibit regular patterns in their electron configurations but have some similarities as a whole such as colored compounds and multiple oxidation states.

Representing Free Elements in Chemical Equations

- Metals are always represented by their empirical formulas (same as symbol for element)
- Nonmetals may be written as empirical formula (C) or as polyatomic molecules (H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂, and P₄).
- Sulfur usually S instead of S₈


Noble Gases all exist as isolated atoms, so use symbols (Xe, He, etc.)
 Metalloids are represented with empirical formulas (B, Si, Ge, etc.)


7.3 Effective Nuclear Charge

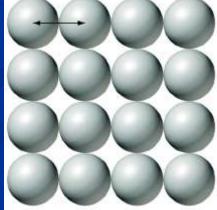
- Z (nuclear charge) = the number of protons in the nucleus of an atom
- Z_{eff} (*effective nuclear charge*) = the magnitude of positive charge "experienced" by an electron in the atom
 Z_{eff} increases from left to right across a
 - period; changes very little down a column

Electron Shielding

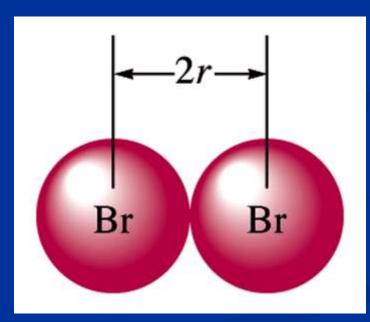
- occurs when an electron (outer) is not attracted to the nucleus
- because of electrons (core) in lower energy levels repelling it.

Shielding occurs when an electron in a many-electron atom is partially shielded from the positive charge of the nucleus by other electrons in the atom.

However, core electrons (inner electrons) shield the most and are constant across a period.



- σ represents the shielding constant (greater than 0 but less than Z)
- Example:

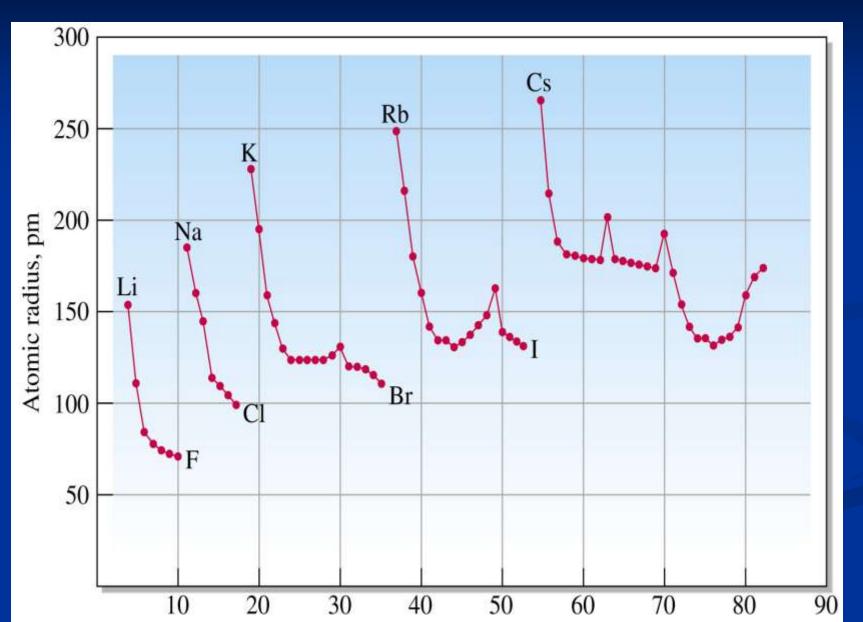

	Li	Be	В	С	Ν
Ζ	3	4	5	6	7
Z _{eff}	1.28	1.91	2.42	3.14	3.83

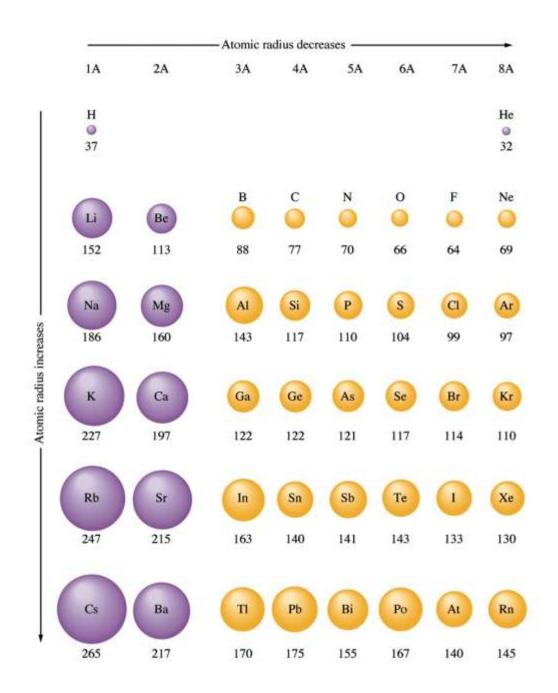
7.4 Periodic Trends in Properties of Elements Atomic radius

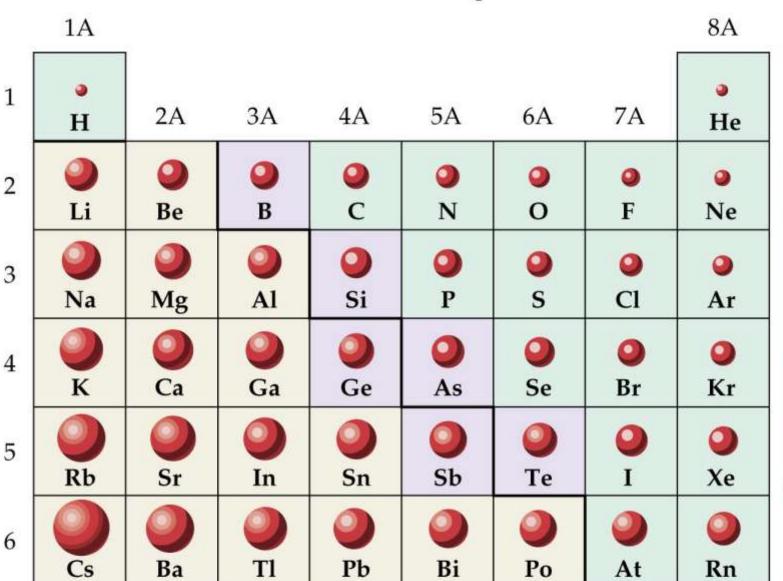
- Atomic radius: distance between nucleus of an atom and its valence shell
- Size of shells <u>can not</u> be specified exactly, neither can the size of atom
- Metallic radius: half the distance between nuclei of two adjacent, identical metal atoms

Covalent radius: half the distance between adjacent, identical nuclei in a molecule

Periodic trends in atomic radii


Across Period:


- atoms get smaller
 because of the
 increased number of
 protons attracting the
 electrons
- the electrons added in the same energy level do not shield electrons from nuclear charge


Down Group:

atoms get larger
increases
because the energy levels being added to the atom

Periodic trends in atomic radii

Relative atomic sizes of the representative elements

Sizes of atoms tend to decrease across a period

Sizes of atoms tend to increase down a column

Explain

What do you notice about the atomic radius across a period? Why? (hint: Z_{eff})

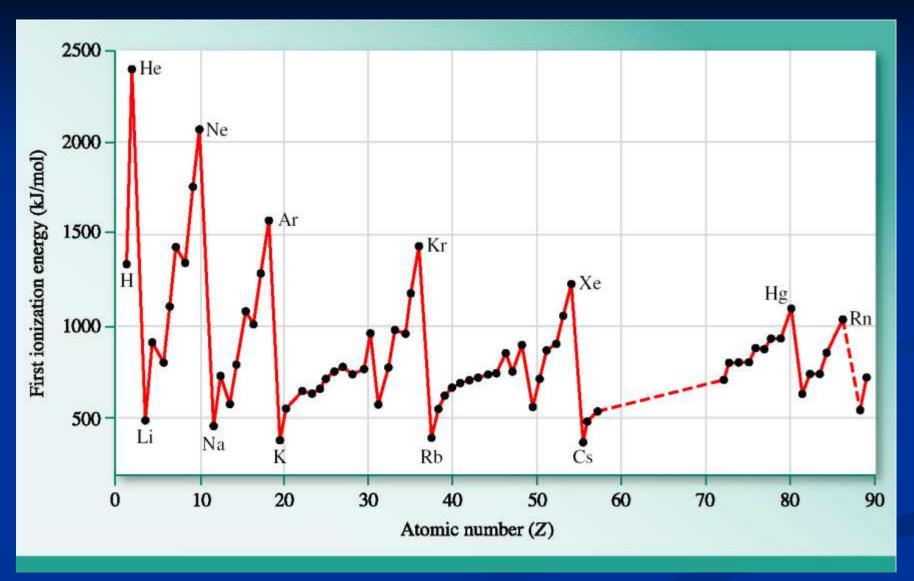
What do you notice about the atomic radius down a column? Why? (hint: n) ■ What do you notice about the atomic radius across a period? Why? (hint: Z_{eff})

Atomic radius decreases from left to right across a period due to increasing Z_{eff} .

What do you notice about the atomic radius down a column? Why? (hint: n)

Atomic radius increases down a column of the periodic table because the distance of the electron from the nucleus increases as *n* increases.

Ionization energy (*IE*) minimum energy needed to remove an electron from an atom in the gas phase Representation:


$$Na_{(g)} \rightarrow Na^+_{(g)} + e^-$$

IE for this 1st ionization = 495.8 kJ/mol
 In general, ionization energy increases as *Z*_{eff} increases
 Exceptions occur due to the stability of specific electron configurations

*IE*₁ (kJ/mol) Values for Main Group Elements

1A 1 H	~ .	2.4		<i>.</i>			8A 18
1312	2A 2	3A 13	4A 14	5A 15	6A 16	7A 17	He 2372
Li 520	Be 899	B 800	С 1086	N 1402	O 1314	F 1681	Ne 2080
Na 496	Mg 738	Al 577	Si 786	P 1012	S 999	Cl 1256	Ar 1520
K 419	Ca 590	Ga 579	Ge 761	As 947	Se 941	Br 1143	Kr 1351
Rb 403	Sr 549	In 558	Sn 708	Sb 834	Te 869	I 1009	Xe 1170
Cs 376	Ba 503	Tl 589	Рь 715	Bi 703	Po 813	At (926)	Rn 1037

Periodic Trends in *IE*₁

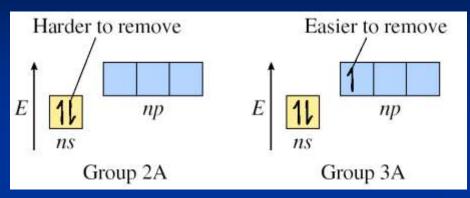
What do you notice about the 1st *IE* across a period? Why? (hint: Z_{eff})

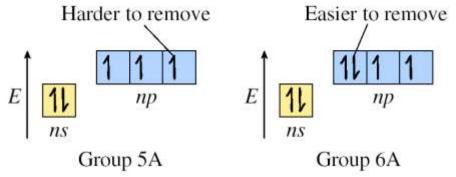
What do you notice about the 1st *IE* down a column? Why? (hint: n)

What do you notice about the 1st IE across a period? Why? (hint: Z_{eff})

 IE_1 increases from left to right across a period due to increasing Z_{eff} .

What do you notice about the 1st *IE* down a column? Why? (hint: n)


*IE*₁ decreases down a column of the periodic table because the distance of the electron from the nucleus increases as *n* increases.


What do you notice about the 1st *IE* between 2A and 3A? Why? (hint: draw the electron configuration)

What do you notice about the 1st *IE* between 5A and 6A? Why? (hint: draw the electron configuration) What do you notice about the 1st *IE* between 2A and 3A? Why? (hint: draw the electron

configuration)

What do you notice about the 1st *IE* between 5A and 6A? Why? (hint: draw the electron configuration)
Harder to remove
Harder to remove

Multiple Ionizations

it takes more energy to remove the 2nd, 3rd, 4th, etc. electron and much more energy to remove core electrons
Why?
Core electrons are closer to nucleus
Core electrons experience greater Z_{eff}

Successive ionization Energies

for Mg

- $I_1 = 735 \text{ kJ/mole}$
- $I_2 = 1445 \text{ kJ/mole}$
- $I_3 = 7730 \text{ kJ/mole}$
- The <u>effective nuclear charge</u> increases as electrons are removed
- It takes much more energy to remove a core electron than a valence electron because there is <u>less shielding</u>.

Successive ionization Energies

Continual removal of electrons increases ionization energy greatly

 $B \rightarrow B^+ + e^ I = 801 \text{ kJ mol}^{-1}$

 $B^+ \rightarrow B^{+2} + e^ I = 2427 \text{ kJ mol}^{-1}$

 $B^{+2} \rightarrow B^{+3} + e^ I = 3660 \text{ kJ mol}^{-1}$ Core electron

 $B^{+3} \rightarrow B^{+4} + e^{-4} = 25,025 \text{ kJ mol}^{-1}$

 $B^{+4} \rightarrow B^{+5} + e^{-}$ $I = 32,822 \text{ kJ mol}^{-1}$

TABLE 7.3		Ionization Energies (in kJ/mol) for Elements 3 through 11*										
	Z	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE7	IE ₈	IE ₉	<i>IE</i> ₁₀	
Li	3	520	7,298	11,815								
Be	4	899	1,757	14,848	21,007	21,007						
В	5	800	2,427	3,660	25,026	32,827						
С	6	1,086	2,353	4,621	6,223	37,831	47,277					
Ν	7	1,402	2,856	4,578	7,475	9,445	53,267	64,360				
0	8	1,314	3,388	5,301	7,469	10,990	13,327	71,330	84,078			
F	9	1,681	3,374	6,050	8,408	11,023	15,164	17,868	92,038	106,434		
Ne	10	2,080	3,952	6,122	9,371	12,177	15,238	19,999	23,069	115,380	131,432	
Na	11	496	4,562	6,910	9,543	13,354	16,613	20,117	25,496	28,932	141,362	

*Cells shaded with blue represent the removal of core electrons.

Electron Affinity (EA)

- Energy released when an atom in the gas phase accepts an electron
 - **Representation:**

 $Cl_{(g)} + e^- \rightarrow Cl_{(g)} (\Delta H = -349.0 \text{ kJ/mol})$

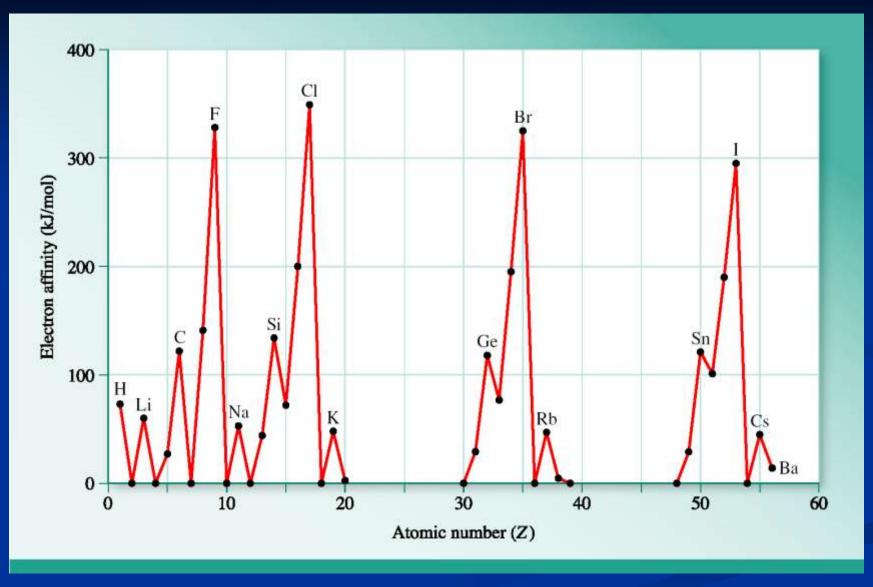
EA for this equation +349.0 kJ/mol energy released (ΔH = negative)

Electron Affinity

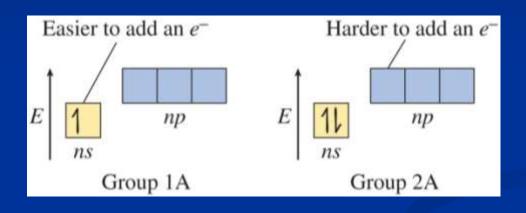
Across Period:

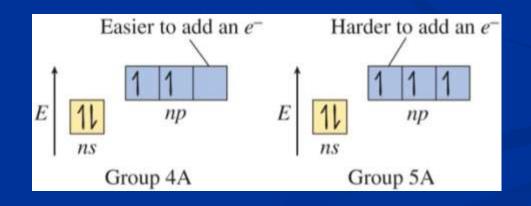
releases more energy so number increases (gets more negative) because electrons added in the same energy level do not shield electrons from nuclear charge

Down Group:


 releases less energy so number decreases (gets less negative)

 because the electrons being added are farther away from the attracting protons


EA (kJ/mol) Values for Main Group Elements


1A 1 H +72.8	2A 2	3A 13	4A 14	5A 15	6A 16	7A 17	8A 18 He (0.0)
Li +59.6	Be ≤0	B +26.7	C +122	N -7	O +141	F +328	Ne (-29)
Na + 52.9	$Mg \leq 0$	Al +42.5	Si +134	P +72.0	S +200	Cl +349	Ar (-35)
K +48.4	Ca +2.37	Ga +28.9	Ge +119	As +78.2	Se +195	Br +325	Kr (-39)
Rb +46.9	Sr +5.03	In +28.9	Sn +107	Sb +103	Te +190	I +295	Xe (-41)
Cs +45.5	Ba +13.95	Tl +19.3	Pb +35.1	Bi +91.3	Po +183	At +270	Rn (-41)

Periodic Trends in *EA*

Periodic Interruptions in *EA*Explained in much the same way as *IE* except not the same elements!

Metallic Character

Metals Shiny, lustrous, malleable Good conductors

■ Low *IE* (form cations)

Form ionic compounds with chlorine

Form basic, ionic compounds with oxygen
Metallic character increases top to bottom

in group and decreases left to right across a period

Nonmetals

■ Vary in color, not shiny

Brittle

Poor conductors

Form acidic, molecular compounds with

oxygen

■ High *EA* (form anions)

Metalloids

Properties between the metals and nonmetals

7.5 Electron Configuration of Ions

 Follow Hund's rule and Pauli exclusion principle as for atoms
 Writing electron configurations helps

explain charges memorized earlier

Ions of main group elements ■ Noble gases (8A) almost completely unreactive due to electron configuration $\blacksquare ns^2 np^6 \text{ (except He } 1s^2\text{)}$ Main group elements tend to gain or lose electrons to become isoelectronic (same valence electron configuration as nearest noble gas)

Na: $1s^22s^22p^63s^1 \rightarrow Na^+ 1s^22s^22p^6$

Na: [Ne] $3s^1 \rightarrow Na^+$ [Ne]

(Na⁺ 10 electrons - isoelectronic with Ne)

Cl: $1s^22s^22p^63s^23p^5 \rightarrow \mathbb{Cl}^-1s^22s^22p^63s^23p^6$ Cl: [Ne] $3s^23p^5 \rightarrow \mathbb{Cl}^-$ [Ar]

(Cl⁻18 electrons - isoelectronic with Ar)

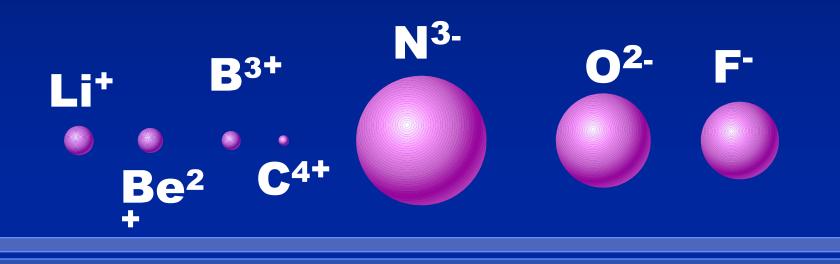
Ions of *d*-Block Elements

- Recall that the 4s orbital fills before the 3d orbital in the first row of transition metals
- Electrons are always lost from the highest "n" value (then from d)

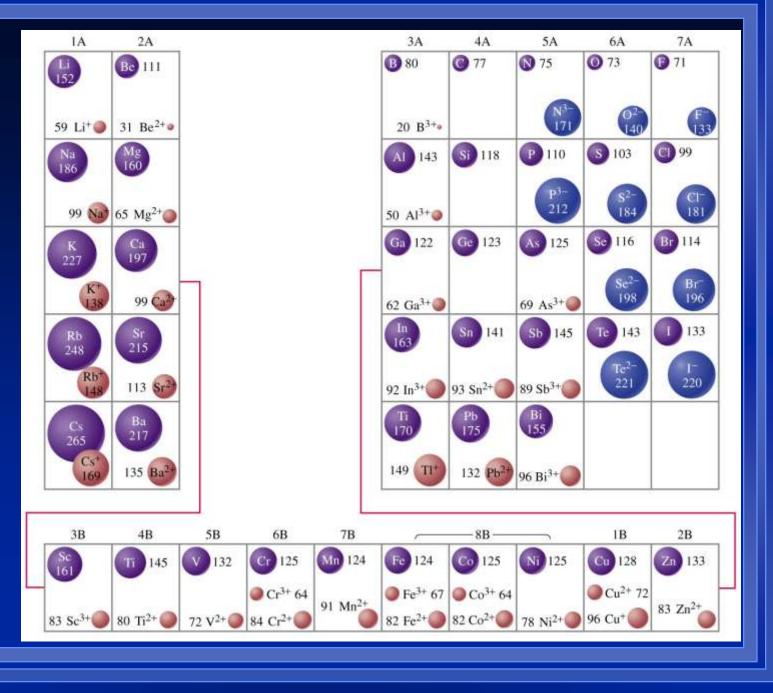
Fe: $[Ar]4s^23d^6 \rightarrow Fe^{2+}$: $[Ar]3d^6$

Fe: $[Ar]4s^23d^6 \rightarrow Fe^{3+}$: $[Ar]3d^5$

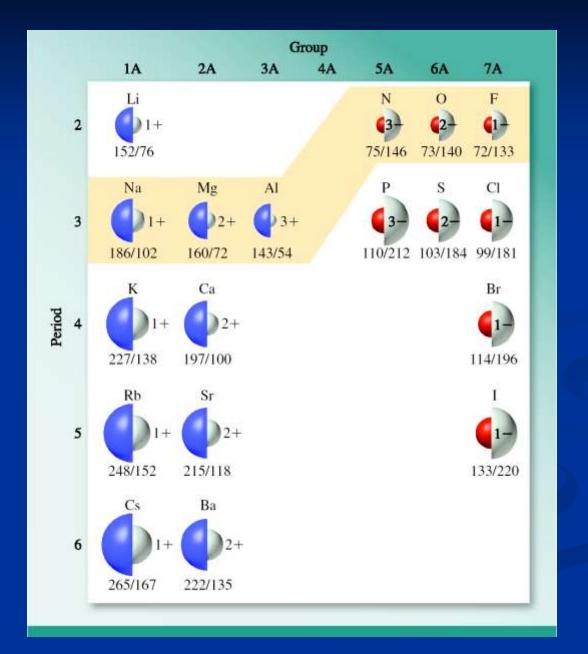
7.6 Ionic Radius


- When an atom gains or loses electrons, the radius changes
- Cations are always smaller than their parent atoms (often losing an energy level)
- Anions are always larger than their parent atoms (increased e⁻ repulsions)

Size of ions


- Ion size increases down a group.
- Cations are <u>smaller</u> than the atoms they came from.
- Anions are <u>larger</u> than atoms they came from.
- across a row ions get smaller, and then suddenly larger.
- First half are cations.
- Second half are anions.

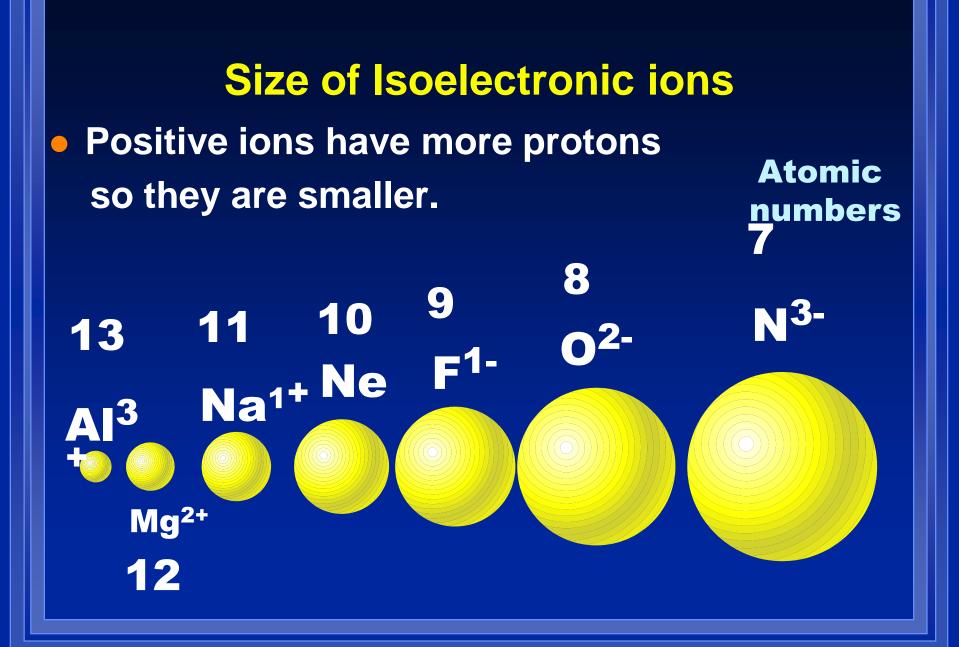
Periodic Trends


 Across the period, the change is complicated because of the change from predominantly <u>metals</u> on the left to <u>nonmetals</u> on the right.

Atomic and Ionic Radii

Comparison of Atomic and Ionic Radii

Isoelectronic Series


Two or more species having the same electron configuration but different nuclear charges

Size varies significantly

Isoelectronic ions

- Iso same
- Iso electronic ions have the same # of electrons in the outermost level
- Al³⁺, Mg²⁺, Na⁺, Ne, F⁻, O²⁻ and N³⁻
 All have *10* electrons.
- All have the same configuration <u>1s²2s²2p⁶</u>

Key Points

- Development of the periodic table
- Modern table and its arrangement
- Main group elements
- Valence electrons
- Effective nuclear charge and relationship to periodic trends
- Atomic radius (ionic radii, covalent radii, metallic radii)

Key Points

- Ionization energy (IE) trends of 1st and multiple IE's
- Electron affinity (EA) trends
- Properties of metals, metalloids and nonmetals
- Isoelectronic predict charges of ions and electron configurations of ions
 Write and/or recognize an isoelectronic series