Professor Abdul Muttaleb Jaber Chemistry Department Office: Room # 261F **Tel: 2611** E-mail: amjaber@kfupm.edu.sa Office hours: S&T 10-12 am

Chapter 1 Chemistry: The central science

The study of chemistry
Classification of matter
Scientific measurement
The properties of matter
Uncertainty in measurement
Using units and solving problems

1.1 The Study of Chemistry

Chemistry

- the study of *matter* and the *changes* that matter undergoes
- Matter
 - anything that has mass and occupies space
- Matter is composed of atoms
- Atoms are found as individuals or molecules
- Atoms and molecules are connected by electrons
- Matter is composed of various types of atoms or molecules.
- Water is composed of O and H; H₂O
- An electric spark causes a mixture of O₂ and H₂ to explode forming H₂O.

 Chemistry you may already know
 Familiar terms: molecules, atoms, and chemical reactions

Familiar chemical formula: H₂O

Molecules can be represented several different ways including molecular formulas and molecular

models.

 Molecular models can be "ball-andstick" or "space-fill." Each element is represented by a particular color

1.2 The scientific method It is a way of solving problems It consists of the following steps: -Observation-what is seen or measured -Hypothesis-guess of why things behave the way they do. (possible explanation for an observation) - Experiment- designed to test hypothesis These steps would lead to new observations, and the cycle goes on Once a set of hypotheses agree with observations, they are grouped into a theory

Scientific method

Thery is a set of tested hypothesis that gives an overall explanation for a natural phenomenon
 Laws are summaries of observations

Often mathematical relationship

1.2 The Scientific Method

1.3 Classification of Matter

 Matter is either classified as a substance or a mixture of substances.
 Substance

- Can be either an *element* or a *compound*

- Has a definite (constant) composition and distinct properties
- Examples: sodium chloride, water, oxygen

States of Matter

- Three States of Matter:
- Solid: rigid fixed volume and shape
- Liquid: definite volume but assumes the shape of its container
- Gas: no fixed volume or shape assumes the shape of its container

States of Matter - Solid particles close together in orderly fashion Ittle freedom of motion a solid sample does not conform to the shape of its container – Liquid particles close together but not held rigidly in position particles are free to move past one another a liquid sample conforms to the shape of the part of the container it fills

– Gas particles randomly spread apart particles have complete freedom of movement a gas sample assumes both shape and volume of container. States of matter can be inter-converted without changing chemical composition \blacksquare solid \rightarrow liquid \rightarrow gas (add heat) \blacksquare gas \rightarrow liquid \rightarrow solid (remove heat)

Substances

Element: cannot be separated into simpler substances by chemical means.

- Examples: iron, mercury, oxygen, and hydrogen
- Compounds: two or more elements chemically combined in definite ratios
 - Cannot be separated by physical means
 - Examples: salt, water and carbon dioxide Copyright McGraw-Hill 2009 13

Mixtures

Mixture: physical combination of two or more substances

- Substances retain distinct identities
- -No universal constant composition
- Can be separated by physical means

Examples: sugar/iron; sugar/water

Types of Mixtures

Homogeneous: composition of the mixture is uniform throughout
Example: sugar dissolved in water
Heterogeneous: composition is not uniform throughout
Example: uniformample: sugar mixed with iron filings

Classification of Matter

1.3 Scientific Measurement

Used to measure quantitative properties of matter
 SI base units

SI system (le Systeme International in French) based on the metric system

TABLE 1.2	Base SI Units		
Base Quantit	y Name of Unit	Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Electric current	ampere	А	
Temperature	kelvin	Κ	
Amount of subst	ance mole	mol	
Luminous intens	ity candela	cd	

SI Prefixes

TABLE 1	.3 Pre	fixes Used with SI Units	
Prefix	Symbol	Meaning	Example
Tera-	Т	$1 \times 10^{12} (1,000,000,000,000)$	1 teragram (Tg) = 1×10^{12} g
Giga-	G	$1 \times 10^{9} (1,000,000,000)$	1 gigawatt (GW) = 1×10^9 W
Mega-	М	$1 \times 10^{6} (1,000,000)$	1 megahertz (MHz) = 1×10^{6} Hz
Kilo-	k	$1 \times 10^3 (1,000)$	1 kilometer (km) = 1×10^3 m
Deci-	d	$1 \times 10^{-1} (0.1)$	1 deciliter (dL) = 1×10^{-1} L
Centi-	с	$1 \times 10^{-2} (0.01)$	1 centimeter (cm) = 1×10^{-2} m
Milli-	m	$1 \times 10^{-3} (0.001)$	1 millimeter (mm) = 1×10^{-3} m
Micro-	μ	$1 \times 10^{-6} (0.000001)$	1 microliter (μ L) = 1 × 10 ⁻⁶ L
Nano-	n	$1 \times 10^{-9} (0.000000001)$	1 nanosecond (ns) = 1×10^{-9} s
Pico-	р	$1 \times 10^{-12} (0.000000000001)$	1 picogram (pg) = 1×10^{-12} g

Mass: measure of the amount of matter in an object

- (weight refers to gravitational pull)
- Mass cannot change weight can
- **Temperature:**
 - Celsius
 - Represented by °C
 - Based on freezing point of water as 0°C and boiling point of water as 100°C
 - Kelvin
 - Represented by K (no degree sign)
 - The *absolute* scale
 - Units of Celsius and Kelvin are equal in magnitude
 - Fahrenheit (the English system) (°F)

Electronic Analytical Balance

Units of Temperature between Boiling and Freezing

Equations for Temperature Conversions

 $^{\circ}C = (^{\circ}F - 32) \times \frac{5}{2}$

$K = C^{\circ} C + 273.15$

 ${}^{\circ}F = \frac{9}{5} \times {}^{\circ}C + 32$

Practice

Convert the temperature reading on the local bank (28°C) into the corresponding Fahrenheit temperature.

$$^{\circ}F = \frac{9}{5} \times ^{\circ}C + 32$$

$$^{\circ} F = \frac{9}{5} \times 28 \ ^{\circ}C + 32 = 82 \ ^{\circ}F$$

Units of measurements Every measurement has two parts **Number** Scale (called a unit) SI system (le Systeme International in French) based on the metric system **Examples: Prefix** 20 grams $k g = 20 X 10^3 g$ 20 $m g = 20 X 10^{-3} g$ 20 6.63×10^{-34} Joule seconds

Volume measurement: Liter

Liter is defined as the volume of 1 dm³
 -1 dm³ =
 -(10cm)³ =
 -1000 cm³ =
 -1000mL

Density is the mass of substance per unit volume of the substance:

density

mass

volume

Densities of Various Common Substances* at 20° C

TABLE 1.5Densities	of Various Common S	Substances [*] at 20°C
Substance	Physical State	Density (g/cm ³)
Oxygen	Gas	0.00133
Hydrogen	Gas	0.000084
Ethanol	Liquid	0.789
Benzene	Liquid	0.880
Water	Liquid	0.9982
Magnesium	Solid	1.74
Salt (sodium chloride)	Solid	2.16
Aluminum	Solid	2.70
Iron	Solid	7.87
Copper	Solid	8.96
Silver	Solid	10.5
Lead	Solid	11.34
Mercury	Liquid	13.6
Gold	Solid	19.32

*At 1 atmosphere pressure

Density: Ratio of mass to volume•

-Formula:

$$d = \frac{m}{V}$$

-d = density (g/mL) -m = mass (g) $-V = \text{volume (mL or cm^3)}$ (*gas densities are usually expressed in g/L)

Practice

The density of a piece of copper wire is 8.96 g/cm³. Calculate the volume in cm³ of a piece of copper with a mass of 4.28 g.

$$d = \frac{m}{V}$$

$$V = \frac{m}{d} = \frac{4.28 \text{ g}}{8.96 \frac{\text{g}}{\text{cm}^3}} = 0.478 \text{ cm}^3$$

Density Problem

An empty container weighs 121.3 g. When filled with a liquid (density 1.53 g/cm³) the container weighs 283.2 g. What is the volume of the container?

1.4 Properties of Matter

- Quantitative: expressed using numbers
- Qualitative: no precise measurements are needed
- Physical properties: can be observed and measured without changing the substance
 - Examples: color, melting point, states of matter
- Physical changes: the identity of the substance stays the same
 - Examples: changes of state (melting, freezing)

Chemical changes: changes after which, the original substance no longer exists

Chemical properties: must be determined by the chemical changes that are observed

- Examples: flammability, acidity, corrosiveness, reactivity
- Examples: combustion, digestion

 Extensive property: depends on amount of matter
 Examples: mass, length

Intensive property: does not depend on amount

Examples: density, temperature, color

1.5 Uncertainty in Measurement

- Exact: numbers with defined values

 Examples: counting numbers, conversion factors based on definitions

 Inexact: numbers obtained by any method other than counting
 - Examples: measured values in the laboratory

Uncertainty in Measurement

A measurement always has some degree of uncertainty. Uncertainty has to be indicated in any measurement. Any measurement has certain digits and one uncertain digit. A digit that must be estimated is called uncertain.

Uncertainty in Measurements

1.14 mL? 1.15 mL? 1.16 mL?

$1.15 \pm 0.01 \text{ mL}$

uncertain digit (1/10 the smallest scale division)

Significant Figures

- Used to express the uncertainty of inexact numbers obtained by measurement
- The last digit in a measured value is an uncertain digit an estimate
- The number of certain digits + the uncertain digit is called number of significant figures.

Guidelines for significant figures

- Any non-zero digit is significant
- Zeros between non-zero digits are significant
- Zeros to the left of the first non-zero digit are not significant
- Zeros to the right of the last non-zero digit are significant if decimal is present
- Zeros to the right of the last non-zero digit are not significant if decimal is not present

Practice

Determine the number of significant figures in each of the following. 345.5 cm **4 significant figures** 0.0058 g **2** significant figures 1205 m **4 significant figures** 250 mL **2 significant figures** 250.00 mL **5** significant figures

Calculations with measured numbers

 Addition and subtraction
 Answer cannot have more digits to the right of the decimal than any of original numbers
 Example:

102.50 two digits after decimal point + 0.231 three digits after decimal point 102.731 round to 102.73

Multiple computations

2.54 X 0.0028 = 0.0105 X 0.060

1) 11.3 2) 11 3) 0.041

Continuous calculator operation = 2.54 x 0.0028 \div 0.0105 \div 0.060 = 11

Here, the mathematical operation requires that we apply the addition/ subtraction rule first, then apply the multiplication/division rule.

$$\frac{6.404 \times 2.91}{18.7 - 17.1} = \frac{6.404 \times 2.91}{1.6} = 12$$

Exact numbers

- Do not limit answer because exact numbers have an infinite number of significant figures
- Example:

A coin of 25 halals has a mass of 2.5 g. If we have three such coines, the total mass is

3 x 2.5 g = 7.5 g

 In this case, 3 is an exact number and does not limit the number of significant figures in the result.

Rounding rules

- If the number is less than 5 round "down".
- If the number is 5 or greater round "up".

Practice

- 105.5 L + 10.65 L =
 - Calculator answer: 116.15 L
- 1.0267 cm x 2.508 cm x 12.599 cm

 − Calculator answer: 32.4419664 cm³
 − Round to: 32.44 cm³ ← round to the smallest number of significant figures

Accuracy and precision

- Two ways to gauge the quality of a set of measured numbers
- Accuracy: how close a measurement is to the true or accepted value
- Precision: how closely measurements of the same thing are to one another

Precision and Accuracy

Describe accuracy and precision for each set

Student A 0.335 g 0.331 g 0.333 g Average: 0.333 g Student B 0.357 g 0.375 g 0.338 g

Student C 0.369 g 0.373 g 0.371 g

0.357 g 0.371 g

True mass is 0.370 grams

Student A's results are precise but not accurate.

Student B's results are neither precise nor accurate.

Student C's results are both precise and accurate.

1.6 Using Units and Solving Problems

Conversion factor: a fraction in which the same quantity is expressed one way in the numerator and another way in the denominator

– Example: by definition, 1 inch = 2.54 cm

- Dimensional analysis: a problem solving method employing conversion factors to change one measure to another often called the "factor-label method"
 - Example: Convert 12.00 inches to meters Conversion factors needed:
 - 2.54 cm = 1 in and 100 cm = 1 meter

$$12.00 \text{ in } \times \frac{2.54 \text{ cm}}{1 \text{ in }} \times \frac{1 \text{ m}}{100 \text{ cm}} = 0.3048 \text{ m}$$

*Note that neither conversion factor limited the number of significant figures in the result because they both consist of exact numbers. Copyright McGraw-Hill 2009

Practice

The Food and Drug Administration (FDA) recommends that dietary sodium intake be no more than 2400 mg per day. What is this mass in pounds (Ib), if 1 Ib = 453.6 g?

How many seconds are in 1.4 days?

Unit plan: days --> hr --> min --> seconds

How many minutes are in 2.5 hours?

Initial unit 2.5 hr Conversion **Final** factor unit 2.5 hr x <u>60 min</u> = 150 min __1/fr

Multiple units

The speed limit is 65 mi/hr. What is this in m/s?

- -1 mile = 1760 yds
- 1 meter = 1.094 yds

65 mi1760 yd1 m1 hr1 minhr1 mi1.094 yd60 min60 s

If you are running at a speed of 65 meters per minute, how many seconds will it take for you to walk a distance of 8450 feet?

Key Points Scientific method Classifying matter SI conversions Density Temperature conversions Physical vs chemical properties and changes Precision vs accuracy Dimensional analysis