Label-free bioelectronic detection of aptamer–protein interactions

Abdel-Nasser Kawde, Marcela C. Rodriguez, Thomas M.H. Lee, Joseph Wang *

Departments of Chemical and Materials Engineering and Chemistry and Biochemistry, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA

Received 23 February 2005, received in revised form 10 March 2005, accepted 10 March 2005

Abstract

We demonstrate for the first time the utility of nucleic acid aptamers for electrochemical detection of proteins. Highly specific and sensitive label-free detection of the target protein is achieved by combining aptamer-coated magnetic beads and chronopotentiometric stripping measurements of the captured protein (in connection to the intrinsic electroactivity of the protein). Lysozyme has thus been detected selectively in a mixture containing a large excess of six proteins and amino acids (both electroactive and non-electroactive), with a detection limit of 350 femtoliter (fM). While aptamer-based electronic sensors are in their infancy, such devices offer attractive opportunities for electrochemical detection of proteins and for developing proteomic chips.

Keywords: Proteins; Aptamers; Stripping potentiometry; Bioelectronics