King Fahd University of Petroleum & Minerals Chemical Engineering Department CHE 560 –Numerical Methods in Chemical Engineering 2010 - 2011 (102)

HW#8

Due: Sunday, 22-May-2011

Consider the following system of nonlinear PDE's representing a modified version of HW#7. In this problem unsteady state non-isothermal reaction and diffusion in a catalytic slab:

$\frac{dy_1}{dt} = \frac{d^2 y_1}{dz^2} - \phi e^{-\varepsilon \left[\frac{1}{y_2} - 1\right]}$	$\Big]_{y_1^2}$
$\frac{dy_2}{dt} = \frac{d^2 y_2}{dz^2} + \gamma \phi e^{-\varepsilon \left[\frac{1}{y_2}\right]}$	$-1 \bigg] y_1^2$
t = 0	$y_1 = 0, y_2 = 1$
$t > 0, \ z = 0$	$\frac{dy_1}{dz} = \frac{dy_2}{dz} = 0$
$t > 0, \ z = 1$	$y_1 = y_2 = 1$

Perform the following:

- (a) Discritize the PDE's specially using Chebyshev collocation method and temporarily using backward Eular method.
- (b) Derive the resulting residual equations.
- (c) Derive the Jacobian Matrix.
- (d) Using h = 0.01 and N = 16, $\phi_1 = 3.0$, $\varepsilon = 1$ and $\gamma = 0.5$, solve this problem using Code_7.f and send your program by e-mail as yourname-HW8.f.