Abstract The influences of mole-

cular weight and LLDPE comono-

mer type on the heterogeneity

(immiscibility) of Ziegler-Natta

LLDPE and LDPE blends are in-

Dynamic and steady shear mea-

surements were carried out in a

(butene) and LDPE are likely

homogeneous and miscible as re-

on blend composition at 140 °C.

Blends of high- M_w (10⁵)LLDPE

ted at 190 °C were only partially

miscible; heterogeneity and immis-

cibility was likely to occur around

the 50/50 composition and in the

likely miscible in the LLDPE-rich

LDPE-rich blends. Blends were

range. Increasing the LLDPE

(butene) and LDPE mixed and tes-

vealed by the dependence of their η'

meter 800.

Rheometrics Mechanical Spectro-

Blends of low- M_w (< 10⁵)LLDPE

vestigated with rheological methods.

Ibnelwaleed A. Hussein Michael C. Williams

Rheological study of heterogeneities in melt blends of ZN-LLDPE and LDPE: Influence of M_w and comonomer type, and implications for miscibility

Received: 27 July 2003 Accepted: 27 October 2003 Published online: 4 June 2004 © Springer-Verlag 2004

I. A. Hussein · M. C. Williams (⊠) Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 2G6, Canada E-mail: mike.williams@ualberta.ca

Present address: I. A. Hussein Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia

Introduction

It is estimated that 60 to 70% of LLDPE enters the market as blends (Utracki 1989a), primarily with other members of the polyolefin family, e.g., LDPE or polypropylene (PP). Despite the long history of poly-ethylene (PE) blending and its widespread use, many questions about the homogeneity of such blends, with obvious implications for thermodynamics and for the rheology, are still not answered to everyone's satisfaction.

Here we employ rheology to address specifically one of the most common types of blends, namely those using LLDPE and LDPE, where Ziegler-Natta (ZN) LLDPE is used. Even within this type of blend, there can be enormous variations due to volume fraction, φ , molecular weight, choice of LLDPE comonomer (i.e., branch length) and branch content as well as distributions of both molecular weight and branching along the LLDPE main chain.

For polyethylenes the simple study of the phase morphology of the melt tends to be unhelpful, and in

branch length (comonomer) from butene to octene slightly increased the miscibility of LLDPE/LDPE blends. It is suggested that the molecular order in polyethylenes (see Hussein and Williams (1999) J Non-Newtonian Fluid Mech 86:105-118; (1998) Macromol Rapid Commun 19:323–325) and mismatch of the molecular conformations of different polyethylene structures provide explanations for the immiscibility of polyethylenes. Agreement was observed between the measured $G'(\omega)$ and $G''(\omega)$ and theoretical predictions of Palierne and Bousmina-Kerner models, which are based on two-phase emulsion behavior.

Keywords Dynamic and steady shear viscosity · Polyethylene · Melt blend · Miscibility · Molecular weight · Comonomer general, individual methods are inconclusive (Groves et al. 1996). The rheology of various kinds of polyolefin blends was surveyed by Plochocki (1978) and that of polyethylenes in particular was reviewed by Utracki (1989b). Blends of PE/PE components show a quite diverse range of behavior as discussed below.

Blends of "homopolymers"

Blends of HDPE/HDPE and LDPE/LDPE (different M_w fractions) were reported to be miscible and homogeneous (Munoz-Escalona et al. 1997; Utracki 1989a, 1989b; Hill and Barham 1995) and the viscosity vs composition relationship followed the log-additivity rule. For LLDPE/LLDPE systems studied by Utracki (1989b), one pair was found miscible; however, another blend was reported to be *immiscible*.

HDPE/LDPE blends

Dobrescu (1980) studied HDPE/LDPE blends of different M_w using a capillary rheometer. In most cases the $\eta(\phi)$ plot showed positive deviation behavior (PDB) relative to various linear mixing rules, such as the arithmetic "rule of mixtures", $\eta = \eta_A + \varphi \eta_B$, and the logadditivity rule (log $\eta = \sum \varphi_i \log \eta_i$); and the stronger the mismatch between the component viscosities η_A and η_B the larger was the PDB. Deviations from the linear mixing rules for $\eta(\varphi)$ has generally been taken to imply emulsion-like behavior and thus immiscibility. Garcia-Rejon and Alvarez (1987) reported the incompatibility (immiscibility) of HDPE/LDPE blends, too. They observed that low concentrations of low-G' HDPE (10%) had increased the blend G' by 50% over that of the higher-G' LDPE (strong PDB). Martinez-Salazar and co-workers (Martinez-Salazar et al. 1991; Plans et al. 1991) correlated PDB of HDPE/LDPE systems to the branch content of LDPE, and reported a critical branch content below which miscibility was assured for their components. Furthermore, Curto et al. (1983) indicated good superposition of reduced $\eta(\dot{\gamma})$ capillary flow data for a series of HDPE/LDPE blends at T = 160 to 200 °C, interpreted as support for likely miscibility (or stable morphology). Similarly, the results of Lee and Denn (2000) and Lee et al. (1997) supported the miscibility of HDPE/LDPE blends.

HDPE/LLDPE blends

The miscibility of certain HDPE/LLDPE pairs was reported by Hu et al. (1987), Lee et al. (1997), and Lee and Denn (2000). However, liquid-liquid phase separation with HDPE/LLDPE systems was detected by Hill and co-workers (Thomas et al. 1993; Hill and Barham 1995) using heavily branched LLDPE (branch content > 40 CH₃/1000 C).

LDPE/LLDPE systems

Utracki and Schlund (1987) found that a blend of LLDPE/LDPE was immiscible; however, other blends of LLDPE/LDPE were reported to be partially miscible (Datta and Birley 1983; Utracki 1989b; Muller and Balsamo 1994; Lee and Denn 2000). The molecular weight and branching information for LLDPE and LDPE used in the previous studies are given in Table 1. It is clear that most of the previous reports did not provide the branching information, which makes comparisons with our current work very difficult.

Therefore, due to the diversity of composition, molecular structure, M_w and MWD the LLDPE/LDPE blends may or may not be miscible in specific cases. Hence, blends of LLDPE with other LLDPE or LDPE may show a widely diverse behavior, dependent on small changes in molecular structure caused by, e.g., different catalyst, polymerization method or composition (Utracki 1989b). It should be noted that Ziegler-Natta (ZN) catalysis produces simultaneously linear and

Table 1 Molecular characteristics of LLDPE/LDPE blends used in previous studies

LLDPE ^a			LDPE			Blend miscibility	Reference	
M _w	ρ , g/cm ³ (solid, at 25 °C)	BC ^b	$M_{\rm w}$	ρ , g/cm ³	CH ₃ /1000C			
133K	N/A	N/A	64.2K	N/A	N/A	Immiscible	Utracki and Schlund (1987)	
133K	0.9185	N/A	130K	0.9215	N/A	Partially miscible	Datta and Birley (1983)	
133K	N/A	N/A	152K	N/A	N/A	Partially miscible	Utracki (1989b)	
130K	N/A	N/A	110K	N/A	N/A	Partially miscible	Muller and Balsamo (1994)	
134K	N/A	16	388K	N/A	32 [°]	Partially miscible	Lee and Denn (2000)	

^aZiegler-Natta resins

^bBranch Content, CH₃/1000C

^cTotal number of short and long branches

branched chains, so these linear LLDPE products are suspected of being intrinsically multiphase even before blending with HDPE or LDPE components.

Blends of LLDPE and LDPE combine the favorable mechanical properties of the LLDPE with the ease of processing of LDPE. Yet, the rheological consequences of blending LLDPE and LDPE have received far less attention than have linear/linear or linear/LLDPE or linear/LDPE blends.

The aim of this investigation is to examine the effects of M_w , molecular architecture (branch type, branch content), MWD, catalyst type (ZN or metallocene which influence several structural factors in LLDPE), and mixing temperature, T_{mix} , on the miscibility of LLDPE blends with LDPE in the melt state. The metallocenes produce random copolymers as opposed to the ZN ones that tend to have higher degrees of short chain branching in the lower M_w components (Freed and Dudowicz 1996). The matrix of resins used as blend components was designed to study one variable at a time.

In this paper, only the effect of M_w and branch type will be discussed; the influence of T_{mix} is discussed elsewhere (Hussein and Williams 1999c),and other parameters will be treated in future publications. Two pairs of LLDPE and LDPE were selected to study the effect of M_w . S229 (LLDPE) and S216 (LDPE) composed the high- M_w pair, and S227 (LLDPE) and S231 (LDPE) were chosen as the low- M_w pair. The effect of the LLDPE branch type was investigated by testing blends of S226 (octene LLDPE) and S216 and comparing results to those of S229 (butene LLDPE) and S216, where both pairs had the same high- M_w nature.

Rheology and miscibility of multiphase systems

For immiscible blend systems, the state of dispersion and specifically the shape of the dispersed phase (i.e., droplets) greatly influence the rheological responses. As illustrated by Chuang and Han (1984), rheological behavior of immiscible blends is strongly affected by the type of applied shear. While shear-induced mixing that alters blend morphology is observed in some steady shear experiments (Larson 1992; Minale et al. 1997), no such effects are reported for small amplitude dynamic shear (Utracki 1988; Chuang and Han 1984). We therefore favor the latter in this study.

Generally, phase separation causes the storage and loss moduli G' and G'' to exceed values for the matrix phase, due to the presence of droplets of the dispersed phase. This increase is a result of "emulsion morphology" present in phase separated systems. Another representation of the effect of emulsion rheology is shown in Fig. 1, taken as behavior typical of φ -dependent data for either miscible (soluble) blends or immiscible blends. For the miscible systems, one expects data to follow the

Fig. 1 Schematic behavior of $\eta(\varphi)$ for soluble and immiscible (emulsion) blends

linear "Rule of Mixtures" or something close to this. For the morphology-dependent emulsions, however, $\eta(\varphi)$ is distinctly nonlinear and often a maximum is seen near the high- η end of the φ -range. Indeed, the latter can be taken as evidence that the blend is immiscible (we will later show that theoretical models predict both of the effects displayed in Fig. 1). Even in a mixture of two Newtonian liquids, the emulsion morphology gives rise to a non-zero G'. That is, the emulsion exhibits elastic behavior due to surface tension between the phases, in addition to the enhanced viscosity (Taylor 1932; Oldroyd 1953).

Earlier hydrodynamic calculations (Taylor 1932; Fröhlich and Sack 1946) for such systems were for dilute emulsions, and an extension to concentrated emulsions (to order φ^2) was given by Choi and Schowalter (1975). They derived expressions for G' and G" for an emulsion of two Newtonian liquids, which can also be applied to a phase separated polymeric system in the low- ω Newtonian regime (Scholz et al. 1989; Gramespacher and Meissner 1992), where the G' had increased due to the presence of droplets. Scholz et al. (1989) derived a constitutive equation for dilute emulsions of non-interacting, spherical and monodisperse droplets of Newtonian liquids. The two liquids were assumed to be incompressible, and totally immiscible. For the linear viscoelastic range of deformation, the emulsion was shown to have dynamic moduli given by

$$\frac{G''(\omega)}{\omega} = \eta' = \eta_m \left[1 + \phi \left(\frac{2.5k+1}{k+1} \right) \right] \tag{1}$$

$$G'(\omega) = \frac{\eta_m^2 \phi}{80(\alpha/R)} \left(\frac{19k + 16}{k+1}\right)^2 \omega^2$$
(2)

where, $\eta_{\rm m}$ = the viscosity (Newtonian) of the matrix liquid, $\eta_{\rm d}$ = the viscosity (Newtonian) of the dispersed droplets, k = $k = \frac{\eta_a}{\eta_m}$, R = radius of the dispersed domains, α = surface tension between the two liquids, and φ = volume fraction of the dispersed phase.

The storage modulus $G'(\omega)$ obtained experimentally at low ω for immiscible polymer blends was reported (Fujiyama and Kawasaki 1991; Graebling et al. 1993; Gramespacher and Meissner 1992; Chuang and Han 1984; Scholz et al. 1989) to be higher than those of the components. Similar to the concentrated-emulsion model, Ajji and Choplin (1991) found the effects of phase separation on G' to be more pronounced than on G". Earlier work of the Williams group (Martinez and Williams 1980) showed similar increase in $\eta'(\varphi)$ and $\eta(\dot{\gamma})$ for an immiscible HDPE/PMMA system. Their rheological measurements were supported by SEM micrographs. The low-shear data showed excellent agreement with the predictions of $\eta_0(\varphi)$ by the dilute Newtonian emulsion model (Taylor 1932; Oldroyd 1953). None of the above-cited experimental studies employed PE/PE blends.

It is recognized that Eqs. (1) and (2) cannot be entirely adequate for polymer melt blends because those equations can accommodate only Newtonian fluids. However, Palierne (1990) developed a general expression for the complex shear modulus of an emulsion of viscoelastic fluids. For an emulsion of two viscoelastic phases with a uniform spherical particle size and constant interfacial tension, the complex modulus of a blend, $G_b^*(\omega)$, was given by

$$G_b^*(\omega) = G_m^* \frac{1 + 3\phi H(\omega)}{1 - 2\phi H(\omega)}$$
(3)

Expressions for G' and G'' and H(ω) are given elsewhere (Carreau et al. 1997). Recently, Bousmina (1999a) extended Kerner's model for modulus of composite solid elastic media (Kerner 1956) to predict the dynamic moduli of an emulsion of viscoelastic liquid phases. Bousmina obtained the following expression for $G_b^*(\omega)$:

$$G_b^* = G_m^* \frac{2(G_d^* + \alpha/R) + 3G_m^* + 3\phi(G_d^* + \alpha/R - G_m^*)}{2(G_d^* + \alpha/R) + 3G_m^* - 2\phi(G_d^* + \alpha/R - G_m^*)}$$
(4)

and corresponding expressions for $G'(\omega)$ and $G''(\omega)$ were also transmitted to us (Bousmina 1999b). Bousmina (1999a) showed that his model (Bousmina-Kerner model) gave predictions similar to those of the Palierne model.

In addition to experimental observations of the sort described in Fig. 1, other types of data have been used to identify the immiscibility of binary blends. One example is a test of so-called Cox-Merz behavior.

The similarity of dynamic and steady shear properties (e.g., between $\eta(\dot{\gamma})$ and $\eta^*(w)(\omega)$, and between $N_1(\dot{\gamma})$ and $2G'(\omega)$) must *not* be expected for immiscible blends (Utracki and Schlund 1987; Chuang and Han 1984). However, while the lack of superposition of dynamic and steady shear viscosities does indicate immiscibility, success of superposition cannot be taken as a proof of miscibility (Utracki and Schlund 1987).

Experimental

Materials All polyethylene resins used in this study (see Table 2) were supplied by NOVA Chemicals Ltd (and are here designated with sample codes "S"). Molecular weight (from GPC), branch content (NMR and FTIR), and melt index (M.I.) characterizations of the samples are given in Table 2. LLDPE and LDPE samples were characterized by TREF (temperature rising elution fractionation), as shown in Figs. 2 and 3 respectively. S226 (octene LLDPE), S227 (butene LLDPE), and S229 (butene LLDPE) were Ziegler-Natta (ZN) products. ZN-LLDPEs are known for their intra- and intermolecular heterogeneity (Usami et al. 1986). The TREF profiles for LLDPE and LDPE (Fig. 2) clearly reveal the complexity and breadth of distribution of molecular structure of ZN LLDPEs.

It is relevant to note that the ZN TREF profiles clearly display two peaks, corresponding to the linearchain components and the branched-chain components of the ZN products (which are revealed as being intrinsically blends themselves and potentially phaseseparated even before being mixed with the other PE products used in this study). (This complication about

Sample code	Density25 °C g/cm ³	Polymer type	CH ₃ /1000C	M_n	$M_{\rm w}$	$M_w/M_n = PD$	M_z	M.I.
S227	0.924	LLDPE(butene) ^a	20.7	14.7K	50.8K	3.46	115K	20
S229	0.918	LLDPE(butene) ^a	22.1	29.5K	105.3K	3.57	268K	1.0
S226	0.920	LLDPE(octene) ^a	14.7	17.0K	106.0K	6.2	343K	1.0
S231	0.918	LDPE	23 ^b	13.4K	71.8K	5.37	183K	7.0
S216	0.919	LDPE	22 ^b	15.5K	99.5K	6.45	281K	0.75

Table 2 Characterization of as-received polyethylenes

^aZiegler-Natta resin

^bTotal number of short and long branches

Fig. 2a-c TREF profiles for LLDPEs: a S227 (butene); b S229 (butene); c S226 (octene)

ZN LLDPE products used in PE blend research seems to have escaped most investigators.) S216 and S231 in Fig. 3 were LDPEs made by high-pressure free-radical gas polymerization and are characterized by TREF profiles that are basically unimodal (though a shoulder appears in the profile of S231, Fig. 3b).

All polyethylene samples used were commercial resins and contained proper amounts of antioxidant (AO).

Fig. 3a, b TREF profiles for LDPE: a S216; b S231

Normally, 0.1% (1000 ppm) or less of primary and secondary antioxidants are used commercially for polyolefins (Bair 1997). Here, an additional 1000 ppm of AO mixture was added to the as-received resin(s) before melt conditioning in the blender. The mixture of extra antioxidants had the following composition: a 50/50 blend of Irganox 1010 {Phenol B, tetrakis[meth-ylene 3-(3',5'-di-*tert*-butylphenol) propionate]methane, $M_w = 1178$, the primary antioxidant} and the phosphorus-containing compound Irgafos 168 {P-1, tris[2,4-di-*tert*-butylphenol] phosphite, $M_w = 646$, the secondary antioxidant}. Both antioxidants are made by Ciba Specialty Chemicals.

Melt conditioning in the blender The Haake Rheocord 90 is designed for use as a computer-controlled torque rheometer, which can also be operated as an extruder or as a mixer. The latter configuration, featuring a sample bowl containing 60 mL of melt, was used for conditioning (or blending) different polymers at constant temperature, rotor speed, and for a fixed time. The LDPE and LLDPE resins used in this study were conditioned in the melt blender at 50 rpm and 190 °C for 10 min. Blends of S229 and S226 with S216 as well as 'pure' polymers were conditioned in the presence of 1000 ppm of additional antioxidant. A previous degradation study (Hussein et al. 2000) showed that this level of AO is adequate to prevent degradation of the Z-N LLDPEs during melt blending. The "conditioned" samples were then removed from the mixing bowl, and air-cooled.

Rheological measurements A Rheometrics Mechanical Spectrometer RMS 800 was employed for small-strain, ω -sweep measurements of dynamic properties, usually at 190 °C. A shear strain amplitude (γ°) of 10% was used, after a strain sweep showed that this γ° was sufficiently small to produce sinusoidal torque responses and dynamic properties independent of γ° (i.e., linear properties were obtained). The ω -sweep testing was performed at 190 °C over the range $\omega = 10^{-2}$ to 10^2 rad/s except for the low-M_w PE blend which was tested over the range $\omega = 1$ to 100 rad/s at 140 °C. The ω -sweep tests were carried out using a cone-and-plate (CP) geometry of 25-mm diameter platens. The cone angle was 0.1 radian with a 53-µm truncated apex. The RMS testing was carried out on discs molded from the samples of the aircooled mixer-conditioned resins. All measurements were conducted using nitrogen as the convection-heating medium to alleviate possible oxidative sample degradation during the sweep tests. The stability of the blends was established from time sweep measurements, G'(t), at different temperatures and repeat measurements for the 10% and 90% S229 blends with S216 as given elsewhere (see Figs. C1 to C3 of Hussein 1999). Sample preparation and test procedure are explained elsewhere (Hussein and Williams 1999a).

Results and discussion

Influence of the M_w

Blends of the low- M_w pair

The dynamic flow measurements were obtained at $T_{test} = 140$ °C for the low- M_w LLDPE S227, S231, and their blends. Lower T_{test} was selected for these low-viscosity components than for the high- M_w pair to enhance viscosity and thus assure that the torque signal was above the sensitivity level of the RMS. The blends were characterized primarily by the following rheological functions: η' (or G'') and η'' (or G') as functions of composition, φ , and frequency, ω .

The φ -dependence of η' for the low-M_w pair (obtained at low ω) is shown in Fig. 4. The $\eta'(\varphi)$ data follow the linear additivity rule ($\eta = \sum_{i} \phi_i \eta_i$, indicated by a

Fig. 4 $\eta'(\varphi)$ for blends of S227 (butene LLDPE) and S231 (LDPE), (low-M_w pair, T_{test} = 140 °C, γ° = 10%, ω = 1 rad/s, T_{mix} = 190 °C)

solid straight line), suggesting the miscibility of blends of the low- M_w pair as proposed in Fig. 1.

Blends of the high- M_w pair

In the following analysis, we aimed at presenting the rheological data in different formats to facilitate the assessment of the miscibility, and possibly help scrutinize the different methods. The dynamic shear data were examined as:

- 1. $G'(\varphi)_{|\omega=\text{const}}$ as well as $\eta'(\varphi)_{|\omega=\text{const}}$ obtained directly from the ω -sweep measurements (method widely used in the literature).
- 2. $\eta'(\varphi)_{|\tau=\text{const}}$ obtained through curve fitting of stressdependent data $\eta'(\tau)$ data (suggested by Van Oene 1978, since the boundary conditions at the immiscible fluid-fluid interfaces require the continuity of the shear stress). At constant τ , the φ -dependence of η' leads to $(\partial \eta'/\partial \varphi)_{\tau} > (\partial \eta'/\partial \varphi)_{\omega}$ since $\{(\partial \eta'/\partial \varphi)_{\tau} = (\partial \eta'/\partial \varphi)_{\tau} = (\partial \eta'/\partial \varphi)_{\omega} [1 - \omega(\partial \eta'/\partial \tau)_{\varphi}]\}$ and $(\partial \eta'/\partial \tau)_{\varphi}$ is negative. Figure 5 gives $\eta'(\omega)$. From this and the definition $\tau = |\eta^*| \times \omega$, the function $\eta'(\tau)$ was obtained and is given elsewhere (Hussein 1999).
- 3. Comparison of $\eta^*(\omega)$ and steady shear viscosity, $\eta(\dot{\gamma})$. Lack of superposition of $\eta^*(\omega)$ and $\eta(\dot{\gamma})$ (Cox-Merz behavior) indicates immiscibility (Utracki and Schlund 1987).
- 4. Zero-shear viscosity, $\eta_0(\varphi)$, extracted from fitting the $\eta'(\omega)$ data to a rheological model.

We now examine these points in detail:

1. First, the $\eta'(\varphi)_{\omega=\text{const}}$ data are presented in Fig. 6 for intermediate ω (0.1 rad/s). There is a strong PDB from linear-additivity and log-additivity in the

Fig. 5 $\eta'(\omega)$ for high-M_w pair. T_{test} = 190 °C, T_{mix} = 190 °C over range ω = 0.01 to 100 rad/s

Fig. 6 $\eta'(\varphi)$ for blends of S229 (butene LLDPE) and S216 (LDPE), (high-M_w pair, T_{test} = 190 °C, γ° = 10%, ω = 0.1 rad/s, T_{mix} = 190 °C)

LDPE-rich blends and around $\varphi = 50\%$, with the blend η' exceeding (in some cases) the viscosity of the more viscous component as suggested in Fig. 1 for emulsions. The $\eta'(\varphi)_{\omega=\text{const}}$ for LLDPE-rich blends tended to converge to the linear-additivity rule (as in Fig. 1). However, the semi-log plots of $\eta'(\varphi)_{\omega=\text{const}}$ (used to check the applicability of the log-additivity rule) were generally showing much stronger PDB compared to the linear additivity rule. On the other hand, linear plots of $G'(\varphi)_{\omega=\text{const}}$ were similar to their counterparts of $\eta'(\varphi)$ with semi-log plots showing much stronger PDB in the low- ω range. The φ -dependency of η' and G' suggest the miscibility of LLDPE-rich blends (high φ) and the immiscibility of the LDPE-rich blends (low φ). More data on $\eta'(\varphi)_{\omega=\text{const}}$ and $G'(\varphi)_{\omega=\text{const}}$ are shown elsewhere (Figs. C.6, C.7, and C.16 to C.19 of Hussein 1999).

2. Second, the $\eta'(\tau)$ data, where τ was calculated as equal to $|\eta^*| \times \omega$ (employed by Wissbrun and Griffin 1982), followed a trend similar to that of $\eta'(\omega)$ (see Hussein and Williams 1999c). However, the curves are distinctly separated from each other. This observation supports the suggestion of Van Oene (1978) that $(\partial \eta'/\partial \varphi)_{\tau} > (\partial \eta'/\partial \varphi)_{\omega}$.

Results for $\eta'(\varphi)_{\tau=\text{const}}$ are similar to the previous plots of $\eta'(\varphi)_{\omega=\text{const}}$ (Fig. 6) suggesting the immiscibility of the high-M_w pair in the 50/50 composition range as well as the LDPE-rich ($\varphi < 0.5$) blends. On the other hand, the LLDPE-rich ($\varphi > 0.8$) blends are likely to be miscible.

The different methods of presenting the dynamic shear data, discussed so far, suggest that the LDPE-rich blends are likely immiscible; and the LLDPE-rich blends are likely miscible. Hence, in a blend of high- M_w components S229 (LLDPE) and S216 (LDPE) a 10% S229 blend is likely to be immiscible while that of 90% S229 is likely miscible.

3. To investigate further the miscibility at the two ends of the composition spectrum, steady shear measurements were performed. Utracki and Schlund (1987) suggested that η'(ω)≡η(γ) for ω=γ for miscible blends. The steady shear measurements were obtained in the CP geometry in the range γ = 0.01 to 1.0 s⁻¹; 3 min of steady shearing were allowed after a γ-change to achieve steady state followed by 30 s of data acquisition, or measurement time.

The steady and dynamic shear measurements for the 10% and 90% S229 blends are displayed in Fig. 7 as $\eta^*(\omega)$ and $\eta(\dot{\gamma})$. The 90% blend (LLDPE-rich blend, suggested above to be miscible) showed a very good degree of superposition of $\eta^*(\omega)$ and $\eta(\dot{\gamma})$ over the whole range of shear confirming the previous interpretations. On the other side, the steady and dynamic shear results for the 10% S229 (LDPE-rich blend, suggested above to be immiscible) lacked superposition over the same shear range. This comparison of steady and dynamic shear viscosities at selected compositions that represent the LLDPE-rich and LDPE-rich blends reinforce the findings of the previous methods of data treatment.

4. Finally, $\eta_o(\varphi)$, is another important parameter that we explored. However, it is often difficult to observe a low- ω Newtonian plateau for high-M_w materials with high polydispersity (PD). This was the case for several samples of the high-M_w pair. In these cases, it is appropriate to use rheological models that can be extrapolated to $\omega = 0$ to obtain η_o .

Composition	$\eta_{\rm o}$ (Pas), $\times 10^{-2}$	θ (s)	m_1	m ₂
S216 (LDPE)	354	19.6	0.78	0.74
10% S229	373	21.3	0.75	0.74
30% S229	341	20.1	0.73	0.68
50% S229	316	9.8	0.50	1.0
70% S229	203	0.7	0.37	1.68
90% S229	120	0.16	0.40	1.61
100% S229 (LLDPE)	92	0.13	0.53	1.2

Fig. 8 $\eta_0(\varphi)$ obtained with Carreau model from $\eta'(\omega)$ data in Fig. 5 for blends of S229 (butene LLDPE) and S216 (LDPE), (high-M_w pair, T_{test}=190 °C, γ° =10%, T_{mix}=190 °C)

At this stage, it is appropriate to offer a tentative explanation for the high $\eta_o(\varphi)$ of the LDPE-rich blends. The likelihood of these blends being two-phase systems (already supported by various arguments above), will be analyzed in terms of emulsion models. In the low- ω limit, the Palierne model reduces to Eq. (1) (dilute Newtonian emulsion model). The line representing Eq. (1) for the dilute-S229 regime is shown in Fig. 8. The model gives a reasonably good prediction of the zero-shear viscosity at low φ (e.g., $(\eta_{o,theor} - \eta_{o,exp})/\eta_{o,exp} \sim 0.07$ for 10% S229). Further, this model predicts and explains the increase in the viscosity above that of the high- η_o fluid (LDPE) due to the addition of 10% of the low- η_o fluid (LLDPE).

In the high- ω non-Newtonian regime, both the Palierne and Bousmina-Kerner models require knowledge of the ratio α/R ; yet, this is difficult to obtain for polyethylenes. One way of estimating α/R is to extract that ratio from the low- ω G'(ω) data using Eq. (2) and assume that it stays constant in the high- ω regime. According to Eq. (2) (a low- ω approximate model) a log-log plot of G'(ω) should be linear with a slope of 2. For the 10% S229, the plot was indeed linear (r²=0.997); however,

Fig. 7 Comparison of $\eta(\dot{\gamma})$ and $\eta^*(w)$ for blends of S229 (butene LLDPE) and S216 (LDPE), (high-M_w pair, $T_{test} = 190 \text{ °C}$, $\gamma^\circ = 10\%, \ \dot{\gamma} = 0.01 - 1 \text{ s}^{-1}, \ T_{mix} = 190 \text{ °C}$)

Utracki (1987) proposed a simple generalization of the Carreau 'Model A' relation between viscosity and rate of deformation in steady shear (Carreau 1972). Utracki and coworkers (Utracki and Schlund 1987; Utracki 1989a, 1989b; Dumoulin et al. 1991) used the following generalization of the $\eta(\dot{\gamma})$ model to describe their $\eta'(\omega)$ data:

$$\eta' = \frac{\eta_o}{[1 + (\omega\theta)^{m_1}]^{m_2}}$$
(5)

where η_{0} is one of the adjustable parameters, the other three being: θ , the mean relaxation time, and the two exponents, m_{1} and m_{2} . It can be seen that for large dimensionless frequencies ($\omega\theta \gg 1$), a 'power law', $\eta' = (\frac{\eta_{0}}{\theta^{m_{1}m_{2}}})\omega^{-m_{1}m_{2}}$ is recovered. In the context of a traditional powerlaw model, $\tau \propto \omega^{n}$ so $\eta' = \tau/\omega \propto \omega^{n-1}$.

The SigmaPlot nonlinear curve fitter was used to fit Eq. (5) to the $\eta'(\omega)$ data as described by Dumoulin et al. (1991). The parameters obtained from the regressions are listed in Table 3.

The mean relaxation time, $\theta(\varphi)$, closely followed the log-additivity rule in the LLDPE-rich range ($\varphi \ge 70\%$) (see Fig. C.12 of Hussein 1999). However, the 50/50 and the LDPE-rich blends showed a strong PDB. The θ values were high and insensitive to changes in composition in the range $\phi \le 30\%$ LDPE suggesting the presence of a multiphase system (Scholz et al. 1989; Graebling et al. 1993).

The computed $\eta_0(\varphi)$, plotted in Fig. 8, shows a large PDB. The shape of the curve of $\eta_0(\varphi)$ is similar to those of $\eta'(\varphi)_{\omega=\text{const}}$ and $\eta'(\varphi)_{\tau=\text{const}}$ (e.g., Fig. 6). The $\eta_0(\varphi)$ values reinforce the previous observations of the dynamic and steady shear measurement.

the slope was ~1 and a first estimate of α/R was obtained as 4.4×10^4 N/m². This value was decreased until model curve-fits were optimized for Fig. 8. The best fitting of G*(ω) data was obtained with $\alpha/R = 3 \times 10^3$ N/m². However, deficiencies in the curve-fit were obvious.

Clearly, a better job of data-fitting could be expected from the viscoelastic emulsion models. This is demonstrated in Fig. 9 for the G'(φ) data at $\omega = 1.0$ rad/s. Only the Palierne Model was used (Bousmina-Kerner does as well) and the theoretical curve is subject to the constraint that α/R does not change with φ . The curve-fit obtained yielded $\alpha/R = 3 \times 10^3$ N/m². Several features in Fig. 9 are worthy of discussion:

- 1. The "Rule of Mixtures" line emerges as a special case $(\alpha = 0)$ which corresponds to having no interfaces at all (i.e., a miscible system). Thus, our prior use of this line as our reference condition (miscibility) is justified. (This $\alpha = 0$ limit is identical for the Bousmina model).
- 2. A very reasonable maximum emerges in the $G'(\varphi)$ function near the high-G' side of the range when the low-G' component is added to the high-G' component. This can only happen if immiscibility prevails, as must be the case for α/R as large as 10^3 N/m^2 and above.
- 3. Even better predictions can be made by the model at specific φ if α/R is allowed to vary with φ . Such variation is reasonable, since the two phases on opposite sides of the interface need not maintain their own compositions as the system overall composition changes (thus, α/R can also be φ -dependent). Still, the variation of $\frac{\alpha}{R}(\varphi)$ to secure exact agreement with the

data points is not large. Values of α/R in the range (1 to 3)×10³ N/m² suffice to fit all the data points in Fig. 9 exactly.

Predictions of G' and G" over a wide range of frequency, using the Palierne and Bousmina-Kerner models are given in Fig. 10. Model predictions for the 10% S229 blend are shown for $\alpha/R = 3 \times 10^3 \text{ N/m}^2$. The two models give almost the same predictions of G' and G" and show good agreement with data (shown in Fig. 10 as circles and squares) over the whole frequency range. The value of α/R used in Fig. 10 ($\alpha/R = 3 \times 10^3 \text{ N/m}^2$) is comparable to that reported for known immiscible but compatibilized polymer blends (Brahimi et al. 1991). If the droplet phase has a size of R≅1 µm, then the order of magnitude of α is about 1 mN/m (1 dyne/cm)—very low, but consistent with an interface between two phases so chemically similar. At low ω , the Bousmina-Kerner model was found to be more sensitive to variations in the ratio α/R than was the Palierne model.

Thus, the different methods of data treatment suggest that the high-M_w pair mixed at 190 °C is likely *miscible* only in the LLDPE-rich blends ($\varphi \ge 70\%$ LLDPE), and likely *immiscible* in the 50/50 and LDPE-rich blends ($\varphi < 50\%$ LLDPE). The immiscibility of the blends can be predicted by Palierne and Bousmina-Kerner models in the sense that they predict $\eta^*(\omega)$ and $\eta'(\varphi)$ and $G'(\varphi)$ with good accuracy based on the assumption of twophase behavior and reasonable values of α/R .

The LLDPE (S229) and the LDPE (S216) used in this study have almost the same average M_w and branch content (see Table 1), suggesting that the two components have equivalent molecular volumes. However, the above results show that adding a small amount of the

10 $\alpha/R=3\times10^3$ N/m² 104 G'; G'', Pa high-M_w pair 105/100k 10³ e G G 102 G': G" (Palierne Model) G'; G" (Bousmina-Kerner Model) 10-2 10-1 10² 10⁰ 10 Frequency, w, rad/s

Fig. 9 Predictions of Palierne model for $G'(\varphi)$ when $(\alpha/R = 3 \times 10^3 \text{ N/m}^2 \text{ for all } \varphi$, as compared with data for blends of S229 (LLDPE) and S216 (LDPE) at $T_{\text{test}} = 190 \text{ °C}$

Fig. 10 Palierne and Bousmina model predictions of G' and G'' for the 10% S229 (butene LLDPE) blend with LDPE ($\alpha/R = 3 \times 10^3 \text{ N/m}^2$, $T_{\text{test}} = 190 \text{ °C}$, $\gamma^\circ = 10\%$, $T_{\text{mix}} = 190 \text{ °C}$)

structurally bimodal LLDPE (heterogeneous, with small size molecules that are highly branched) to the structurally unimodal LDPE is more likely to cause immiscibility than the addition of a small amount of LDPE to LLDPE (e.g., see Figs. 7 and 8). These experimental findings are in agreement with theoretical predictions of Fredrickson et al. (1994). They showed that compositional asymmetry is present in polyolefin blends if the two components have equivalent overall molecular volumes. Hence, adding a small amount of a highly branched component to a lightly branched melt is more likely to cause liquid-liquid phase separation than vice versa (Fredrickson et al. 1994).

The influence of high M_w (usually deemed the dominant factor for inducing immiscibility) must be reexamined in view of *partial* miscibility depicted by this study, despite the fact that the components of the blend (S229 and S216) have almost the same high M_w . Further, previous studies on similar systems (of even higher M_w than those covered in the present study, see Table 1) reported partial miscibility too. The influence of M_w on the miscibility of high- M_w LLDPE/LDPE blends shown above (e.g., see Figs. 7 and 8) suggests an unexpectedly strong influence of molecular structure, possibly more so than molecular weight, on the miscibility of polyethylenes. This seems consistent with theoretical findings (Fredrickson and Liu 1995; Bates and Fredrickson 1994) that acknowledge the important influence of the conformational and architectural "mismatch" between components of polyolefin blends on the miscibility of polyolefins.

Influence of comonomer type

Here, the influence of the comonomer type (or branch length) on the miscibility of LLDPE/LDPE systems was studied. For this purpose, an octene-LLDPE (S226) of the same high M_w (see Table 2) and similar TREF profile (see Fig. 2) as that of the butene-LLDPE (S229) was selected for blending with S216 (LDPE). The blends examined were 20, 50, and 80% S226 (octene) in addition to the 'pure' polymers. Dynamic shear data was obtained and analyzed in the same fashion as described earlier.

The dynamic viscosities of the octene blends $\eta'(\omega)$, are shown in Fig. 11. At low ω , the LDPE-rich blends $(\varphi < 50\%)$ show viscosities that are approximately the same as that of LDPE (higher η_o component). The $\eta'(\omega)$ of the 20% S226 (octene-LLDPE) blend was higher than that of LDPE ($\eta_{o, \text{ LDPE}} > \eta_{o, \text{ LLDPE}}$) for over a decade of ω . PDB was observed over the whole composition range, and the behavior was more pronounced in the LDPErich blends. The parameters of the Carreau Model were determined by fitting the $\eta'(\omega)$ data to Eq. (5) as discussed earlier. The extracted $\eta_o(\varphi)$ data shows PDB for the LDPE-rich (the 20% S226) and the 50/50 blends,

Fig. 11 $\eta'(\tau)$ for blends of S226 (octene LLDPE) and S216 (LDPE), (T_{test} = 190 °C, $\gamma^{\circ} = 10\%$, $\omega = 0.1-100$ rad/s, T_{mix} = 190 °C)

while η_0 follows linear-additivity for the LLDPE-rich (the 80% S226) blend.

Palierne's model was used to estimate η_o of the 20% S226 blend; however, this composition may be outside the range of the applicability of the model (not sufficiently dilute). For the octene LLDPE, the deviation of model predictions from data $[(\eta_{o,theor} - \eta_{o,exp})/\eta_{o,exp}]$ was higher (~17%) at $\varphi = 0.2$ than that obtained for the butene S229 blend (~7% at $\varphi = 0.1$). However, no conclusion could be drawn from this comparison since the composition was different. In general, the strong PDB (in the LDPE-rich range) of the *butene* LLDPE (S229) was not that great in the *octene* LLDPE blends. This is evident in plots like $\eta'(\varphi)_{|\omega \text{ or } \tau = \text{ const}}$.

Similarly, different data treatment techniques (Hussein 1999) supported the η_o results in suggesting the miscibility of the 80% S226 blend. For the 50/50 octene blend, η_o exhibited PDB from linear-additivity rule, but less severe than that of the *butene* system. This suggests that longer branching in LLDPE improves miscibility with LDPE.

Immiscibility of polyethylenes: tentative explanations

Earlier, we pointed out the importance of molecular structure on the miscibility of polyethylenes. Further, the details of the molecular structure are becoming more important in view of the reported immiscibility of LLDPE/LLDPE systems (Utracki 1989b) and liquid-liquid phase separation in 'pure' LLDPE (Hill and Puig 1997; Munstedt et al. 1998; Gabriel et al. 1998; Wardhaugh and Williams 1995). Here, we will try to give a tentative explanation for the immiscibility of polymethylenes in light of our investigation of 'pure' polymers.

Both rheology and thermal analyses have shown that HDPE, lightly branched LDPE, and LLDPE possess molecular order in the liquid state; however, this is not the case for a highly branched LLDPE which is suggested to have amorphous conformation (Hussein and Williams 1998, 1999a, 1999b, 1999c). The molecular order is accompanied by high temperature (208 °C, 227 °C) transitions. This suggests a correlation between molecular architecture and conformation. Furthermore, conformational "mismatch" is evident especially in ZN-LLDPE with components ranging from linear to highly branched molecules (see Fig. 1). The recognition of the molecular order (or disorder) and the high-T transitions in molten polyethylenes can explain the immiscibility of LLDPE and its blends with other polyethylenes. The existence of these transitions also implies the importance of another parameter that is usually overlooked, i.e., T_{mix} (Hussein and Williams 1999c).

Alternative explanations

Although the rheological evidence presented here seems persuasive that LLDPE/LDPE blends in the melt state contain heterogeneities of an emulsion nature for sufficiently high molecular weights and over wide composition ranges, there remains a question as to whether a proper interpretation is that immiscibility (liquid-liquid phase separation) occurs in these systems or other explanations exist (inasmuch as conventional thermodynamics might argue that such similar hydrocarbon chains should be mutually soluble).

For example, one might suggest that the blending process was simply insufficient, perhaps because of cross-linking, which is common in polyethylenes at high temperatures in the presence of oxygen. If so, the particles created would not blend homogeneously. However, our parallel study of such behavior (Hussein et al. 2000) showed that this did not occur when the AO was present at the level used here. Furthermore, such crosslinking would not exhibit the φ -dependence observed here nor the molecular weight dependence. Moreover, if cross-linking occurred, the particles would not yield data that could be fitted by emulsion-based theories which presume liquid state deformability impossible for crosslinked particles.

Alternatively, the blender might be accused of inadequacies because of the difficulty in shearing (or "conditioning") components having high viscosity when M_w was high. However, when blends of the same species but different M_w were prepared, there was rheological and DSC evidence only of homogeneity.

Conclusions

Several data-treatment approaches were used in this study. First, plots of $\eta'(\omega)$, $\eta'(\varphi)|_{\omega=\text{const}}$, $\eta'(\tau)$, $G'(\omega)$, $G'(\varphi)|_{\omega=\text{const}}$ were shown to be beneficial; making it possible to identify the miscible and phase-separated regions in the high-M_w blends. Second, the comparison of $\eta'(\omega)$ and $\eta(\dot{\gamma})$ was found to be an important indicator of miscibility. Third, the four-parameter Carreau model was used to model $\eta'(\omega)$ data, allowing the assessment of miscibility through $\eta_0(\varphi)$ and $n(\varphi)$. Certain techniques, like $\eta'(\varphi)|_{\omega \text{ or } \tau=\text{const}}$, were found to be particularly useful. However, for ω -sweep measurements, plots of $\eta'(\varphi)|_{\omega=\text{const}}$ are easy to generate.

In conclusion, the effects of molecular weight and branch type on the miscibility of LLDPE/LDPE blends were investigated. The following is a summary of the previous observations suggested by the different methods of data treatment:

- 1. Blends of low- M_w ZN-LLDPE (butene) and LDPE are likel *y* miscible over all φ .
- Blends of high-M_w ZN-LLDPE (butene) and LDPE mixed at 190 °C are *partially* miscible. *Immiscibility* is likely to occur around the 50/50 composition and in the LDPE-rich blends. Blends are likely *miscible* in the LLDPE-rich range.
- 3. The immiscibility of the blends leads to $\eta'(\varphi)$ and $\eta''(\omega)$ that *can* be explained by *emulsion* models (e.g., dilute emulsion model; Palierne model; Bousmina-Kerner model).
- 4. The complex molecular mixture constituting ZN-LLDPE and the 'mismatch' in the molecular *conformation* of LLDPE and LDPE is likely responsible for their immiscibility. Further conclusions are contained in another investigation wherein metallocene LLDPE is involved (Hussein and Williams 2003).
- 5. Increasing the branch length from butene to octene in LLDPE increases miscibility with LDPE.

Acknowledgements Financial support from NOVA Chemicals Ltd, the Natural Sciences and Engineering Research Council of Canada, and University of Alberta is gratefully acknowledged. In addition, we thank NOVA Chemicals Corporation for providing polyethylene samples as well as the NMR, and FTIR characterization of branching content. We are also grateful to Dr. Elizabeth Karbashewski, Dr. Kam Ho, Dr. Shiv Goyal and Dr. Charles Russel of NOVA Chemicals Ltd. for providing the TREF, branching, and melt index characterizations.

We would like to thank Dr. Phillip Choi (U. of A.) for carrying out the rheological measurements on the low molecular weight pair of polyethylene blends and Ms. Naiyu Bu (U. of A.) for the GPC characterization. Also, IAH would like to acknowledge KFUPM for its support.

References

- Ajji A, Choplin L (1991) Rheology and dynamics near phase separation in a polymer blend: model and scaling analysis. Macromolecules 24:5221–5223
- Bair HE (1997) Thermal analysis of additives in polymers. In: Turi E (ed) Thermal characterization of polymeric materials, 2nd edn, vol 2. Academic Press
- Bates FS, Fredrickson GH (1994) Conformational asymmetry and polymerpolymer thermodynamics. Macromolecules 27:1065–1067
- Bousmina M (1999a) Rheology of polymer blends: linear model for viscoelastic emulsions. Rheol Acta 38:73–83
- Bousmina M (1999b), Private communica-
- Brahimi B, Ait-Kadi A, Ajji A, Jerome R, Fayt R (1991) Rheological properties of copolymer modified polyethylene/polystyrene blends. J Rheol 35:1069–1091
- Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16(1):99–127
- Carreau PJ, De Kee DCR, Chhabra RP (1997) Rheology of polymeric systems: principles and applications. Hanser Publishers, chap 8, p 338
- Choi SJ, Schowalter WR (1975) Rheological properties of nondilute suspensions of deformable particles. Phys Fluids 18(4):420–427
- Chuang CI, Han CD (1984) Rheological behavior of polymer blends. J Appl Polym Sci 29:2205–2229
- Curto D, La Mantia FP, Acierno D (1983) The rheological behavior of HDPE/ LDPE blends. I. End effects and shear viscosity. Rheol Acta 22:197–208
- Datta NK, Birley AW (1983) Polyethylene blends: low-density and linear low-density types. Plast Rubber Compos Process Appl 3(3):237–242
- Dobrescu V (1980) Influence of blending upon rheological properties of polymers in the melt. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology, vol 2. Plenum Press, New York
- Dumoulin M, Utracki LA, Carreau PJ (1991) Melt rheology and morphology of linear low density polyethylene/ polypropylene blends. In: Utracki LA (ed) Progress in polymer processing. Hanser Publishers
- Fredrickson GH, Liu AJ (1995) Design of miscible polyolefin copolymer blends. J Polym Sci Part B Polym Phys 33:1203– 1212
- Fredrickson GH, Liu AJ, Bates FS (1994) Entropic corrections to the Flory-Huggins theory of polymer blends: architectural and conformational effects. Macromolecules 27:2503–2511

- Freed KF, Dudowicz J (1996) Influence of short chain branching on the miscibility of binary polymer blends: application to polyolefin mixtures. Macromolecules 29:625–636
- Fröhlich H, Sack R (1946) Theory of the rheological properties of dispersion. Proc Roy Soc A185:415–430
- Fujiyama M, Kawasaki Y (1991) Rheological properties of polypropylene/ High-density polyethylene blend melts.
 II. Dynamic viscoelastic properties. J Appl Polym Sci 42:481–488
- Gabriel C, Kaschta J, Munstedt H (1998) Influence of molecular structure on rheological properties of polyethylenes.
 I. Creep recovery measurements in shear. Rheol Acta 37:7–20
- Garcia-Rejon A, Alvarez C (1987) Mechanical and flow properties of highdensity polyethylene/low-density polyethylene blends. Polym Eng Sci 27(9):640–646
- Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329
- Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36(6):1127–1141
- Groves DJ, McLeish TCB, Chohan RK, Coates PD (1996) Predicting the rheology of linear with branched polyethylene blends. Rheol Acta 35:481–493
- Hill MJ, Barham PJ (1995) Absence of phase separation effects in blends of linear polyethylene fractions of differing molecular weight. Polymer 36:1523– 1530
- Hill MJ, Puig CC (1997) Liquid-liquid phase separation in blends of a linear low density polyethylene with a low density polyethylene. Polymer 38:1921– 1931
- Hu SR, Kyu T, Stein RS (1987) Characterization and properties of polyethylene blends. I. Linear low-density polyethylene with high-density polyethylene. J Polym Sci Part B Polym Phys 25:71–87
- Hussein IA (1999) Molecular order, miscibility, and rheology of molten polyethylenes. PhD Thesis, University of Alberta, Edmonton
- Hussein IA, Williams MC (1998) Rheological evidence for high-temperature phase transitions in melts of high-density polyethylene. Macromol Rapid Commun 19:323–325
- Hussein IA, Williams MC (1999a) Anomalous nonlinearities in steady shear rheology of polyethylene melts. J Non-Newtonian Fluid Mech 86:105–118

- Hussein IA, Williams MC (1999b) Temperature dependence of complex viscosity in HDPE melts and evidence of microstructural transitions. Presented at the EURORHEO99 Conference, Sophia Antipolis, France, May, pp 3–7
- Hussein IA, Williams MC (1999c) Influence of T_{mix} on rheology and miscibility of polyethylene blends. Polyblends '99, Boucherville, Quebec. Polym Eng Sci 41(4): 696–701
- Hussein IA, Williams MC (2003) Rheological study of the influence of branch content on the miscibility of octene m-LLDPE and ZNLLDPE in LDPE. Polym Eng Sci (in press)
- Hussein IA et al. (2000) Thermomechanical degradation in the preparation of polyethylene blends. Polym Deg Stability 68(3):381–392
- Kerner EH (1956) The elastic and thermoelastic properties of composite media. Proc Phys Soc B69:808–813
- Larson RG (1992) Flow-induced mixing, demixing, and phase transitions in polymeric fluids. Rheol Acta 31:497– 520
- Lee HS, Denn MM (2000) Blends of linear and branched polyethylenes. Polym Eng Sci 40(5)
- Lee SY, Jho JY, Lee YC (1997) Effect of comonomer distribution of LLDPE on miscibility behavior with HDPE. Polym Mater Sci Eng 76:325–326
- Martinez CB, Williams MC (1980) Viscosity and microstructure of polyethylenepoly(methyl methacrylate) melt blends: some simple interpretations. J Rheol 24(4):421–450
- Martinez-Salazar J, Cuesta MS, Plans J (1991) On phase separation in high- and low-density polyethylene blends. 1. Melting-point depression analysis. Polymer 32(16):2984–2988
- Minale M, Moldenaers P, Mewis J (1997) Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30:5470–5475
- Muller AJ, Balsamo V (1994) Thermal characterization of low density and linear low density polyethylene blends. In: Findayson K (ed) Advances in polymer blends and alloys technology. Technomic Publishing Company, Lancaster, chap 1, pp1–21
- Munstedt H, Kurzbeck S, Egersdorfer L (1998) Influence of molecular structure on rheological properties of polyethylenes. Part II. Elongational behavior. Rheol Acta 37:21–29
- Munoz-Escalona A, Lafuente P, Vega JF, Munoz ME, Santamaria A (1997) Rheological behavior of metallocene catalyzed high density polyethylene blends. Polymer 38(3):589–594

- Oldroyd JG (1953) The elastic and viscous properties of emulsions and suspensions. Proc R Soc A 128:122–132
- Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214; Erratum 30:497 (1991)
- Plans J, Cuesta S, Martinez-Salazar J (1991) On phase separation in high- and low-density polyethylene blends. 2. A working model. Polymer 32(16):2989– 2991
- Plochocki AP (1978) Polyolefin blends: rheology, melt mixing, and applications. In: Paul DR, Newman S (eds) Polymer blends, vol 2. Academic Press
- Scholz P, Froelich D, Muller R (1989) Viscoelastic properties and morphology of two-phase polypropylene/polyamide 6 blends in the melt. Interpretation of results with an emulsion model. J Rheol 33(3):481–499

- Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc A138:41–48
- Thomas D, Williamson J, Hill MJ, Barham PJ (1993) Liquid-liquid phase separation in a ternary blend of polyethylene. Polymer 34(23):4919–4923
- Usami T, Gotoh Y, Takayama S (1986) Generation mechanism of short-chain branching distribution in linear lowdensity polyethylenes. Macromolecules 19:2722–2726
- Utracki LA (1987) Rheology and processing of multiphase systems. In: Ottenbrite RM, Utracki LA, Inoue S (eds) Current Topics in Polymer Science, vol. II, Rheology and Polymer Processing/ Multiphase Systems, Hanser Publishers, New York
- Utracki LA (1988) Viscoelastic behavior of polymer blends. Polym Eng Sci 28(21):1401–1404
- Utracki LA (1989a) Polymer alloys and blends: thermodynamics and rheology. Hanser Publishers, NY

- Utracki LA (1989b) Melt flow of polyethylene blends. In: Utracki LA, Weiss RA (eds) Multiphase polymers: blends and ionomers. ACS Symposium Series, ACS Washington, DC
- Utracki LA, Schlund B (1987) Linear low density polyethylenes and their blends. Part 4. Shear flow of LLDPE blends with LLDPE and LDPE. Polym Eng Sci 27(20):1512–1522
- Van Oene H (1978) Rheology of polymer blends and dispersions. In: Paul DR, Newman S (eds) Polymer blends, vol 1. Academic Press
- Wardhaugh LT, Williams MC (1995) Blockiness of olefin copolymers and possible microphase separation in the melt. Polym Eng Sci 35(1):18–27
- Wissbrun KF, Griffin AC (1982) Rheology of a thermotropic polyester in the nematic and isotropic states. J Polym Sci Polym Phys Ed 20:1835–1845