OLD EXAM QUESTIONS FROM CHAPTERS 2 & 3

Q. (20 pts)

(a) The Colburn equation for heat transfer is given by:

$$\left(\frac{h}{CG}\right)\left(\frac{C\mu}{k}\right)^{2/3} = \frac{a}{\left(\frac{DG}{\mu}\right)^{0.2}}$$

where C = heat capacity, $\left(\frac{\text{Btu}}{\text{lb}_{\text{m}} \text{ F}^{\circ}}\right)$ $\mu = \text{viscosity}$, $\left(\frac{\text{lb}_{\text{m}}}{\text{hr f}t}\right)$

$$\mu = \text{viscosity}, \left(\frac{\text{lb}_{\text{m}}}{\text{hr f}t}\right)$$

 $k = \text{thermal conductivity,} \quad \left(\frac{\text{Btu}}{\text{hr ft F}^{\circ}}\right)$

D = pipe diameter, ft

$$G = \text{mass velocity}, \left(\frac{\text{lb}_{\text{m}}}{\text{hr ft}^2}\right)$$

a is a dimensionless number

What are the equivalent **SI** units of the heat transfer coefficient, h?

(b) The equation of pressure drop due to friction for fluids flowing in a pipe is given by:

$$\Delta P = \frac{2 f L \rho v^2}{D}$$

where ΔP = pressure drop, ν =velocity, L = length of the pipe, D = diameter of the pipe, and ρ is the fluid density. What is the dimension of the friction factor, f? (Hint: Use base dimensions in your solution.)

- Q. (25 pts) Consider that some (x,y) data follow the equation $y = \sqrt{a e^{b/x} + 4}$
 - (a) How would you plot the data to get a straight line on a rectangular paper?
 - (b) Determine the slope and intercept (with their units) of the linear plot using the data points (x=1.25 s, y=5.12°C) and (x=2.5 s, y=3.74°C) by calculation (without plotting).
 - (c) Plot the linear equation on a rectangular graph paper (supplied) using the two data points in part (b) and showing the intercept on your plot.
 - (d) Determine the constants a and b with their units.
- Q. (10 pts) A mixture of gases has the following composition by mole:

$$CH_4$$
 40.0 %, C_2H_6 20.0 %, C_3H_8 30.0 %, C_4H_{10} 10.0 %

Calculate the mass composition and the average molecular weight of the gas. (Atomic weigths of C and H are 12 and 1, respectively.)

Q. (7 pts) Air (79 mole% N₂, 21 mole% O₂) flows to a reactor at a rate of 1000 kg/h. Calculate the rate of flow of O_2 into the reactor in kg/h.