Decision Making with Utilities
• In some situations, there may be factors that make decision making using expected value unacceptable.

• This usually happens when
 – the amount of loss is so big that it will not be acceptable even at low probability (e.g. insurance)
 – the amount of profit is so big that it will be sought even at low probability (e.g. lottery)
Utility

Utility is a measure of the worth of an outcome to the decision maker. It reflects the decision maker’s attitude towards risk.
• Consider the 3 decision alternatives
d_1 = make investment A
d_2 = make investment B
d_3 = do not invest
• The states of nature are
 s_1 = prices go up \Rightarrow P(s_1)=0.30
 s_2 = prices remain stable \Rightarrow P(s_1)=0.50
 s_3 = prices go down \Rightarrow P(s_3)=0.20
Payoff Table

<table>
<thead>
<tr>
<th>Decision</th>
<th>Prices up</th>
<th>Prices stable</th>
<th>Prices down</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁</td>
<td>30,000</td>
<td>20,000</td>
<td>-50,000</td>
</tr>
<tr>
<td>d₂</td>
<td>50,000</td>
<td>-20,000</td>
<td>-30,000</td>
</tr>
<tr>
<td>d₃</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Decision based on Expected Value

\[
\begin{align*}
EV(d_1) &= 0.3(30,000) + 0.5(20,000) + 0.2(-50,000) = 9,000 \\
EV(d_2) &= 0.3(50,000) + 0.5(-20,000) + 0.2(-30,000) = -1,000 \\
EV(d_3) &= 0.3(0) + 0.5(0) + 0.2(0) = 0
\end{align*}
\]

Therefore, SELECT \(d_1 \) with \(EV = 9,000 \)

- But, suppose that this company is in financial difficulty and the loss of 50,000 would be detrimental to it.
- In such a case, \(d_1 \) is not desirable
- To deal with this situation, we need to determine the utilities of the monetary values in the decision
Determining Utilities

• Let $U(M) = \text{Utility of } M$ [M=Monetary Amount]
• Assign (arbitrarily) utility to the highest monetary value in payoff table
 $\Rightarrow U(50,000) = 10$
• Assign (arbitrarily) utility to the lowest monetary value in payoff table
 $\Rightarrow U(-50,000) = 0$
 Note: $U(50,000) > U(-50,000)$
• Assign utilities to the other values as follows
Assigning Utilities to Middle Values

Consider the payoff of 30,000:

Decision maker is asked to select one of two choices:
1. a guaranteed amount of 30,000, or
2. participate in the following lottery
 DM get a payoff of 50,000 with probability \(p \), or a payoff of -50,000 with probability \((1-p)\)

a. If \(p \) is close to 0, DM will prefer the 30,000
b. If \(p \) is close to 1, DM will prefer lottery

c. As we increase \(p \) from 0, at what value does DM changes preference to the lottery?
d. At this value of \(p \), DM has no preference between the two choices (equivalent)
Assigning Utility to the Value 30,000

- Suppose the DM chooses $p=0.95$
- Now we can determine the $U(30,000)$ as follows:
 \[
 U(30,000) = pU(50,000) + (1-p)U(-50,000)
 \]
 \[
 = 0.95 \times 10 + 0.05 \times 0
 \]
 \[
 = 9.5
 \]
- Note that at $p=0.95$ the EV(lottery) is:
 \[
 EV(lottery) = 0.95(50,000)+0.05(-50,000)
 \]
 \[
 = 45,000
 \]
• DM is willing to accept a guaranteed amount of 30,000 rather than risk anything more than 5% chance of a loss of 50,000
• The difference between 45,000 and 30,000 is referred to as the risk premium.
• The DM is willing to pay 15,000 risk premium to avoid the 5% chance of losing 50,000.
Assigning Utility to the Value -20,000

- As before, DM is asked to select one of two choices:
 1. a guaranteed amount of -20,000, or
 2. participate in the lottery
 DM get a payoff of \(50,000\) \text{ with probability } p, or a payoff of \(-50,000\) \text{ with probability } \(1-p\)

- For example, we ask DM if \(p=0.90\), would he choose lottery or an assured loss of 20,000 (\(\rightarrow\)lottery)
- We lower \(p\) until point of indifference is reached.
- Suppose at this point \(p=0.55\)
- Now we can determine the \(U(-20,000)\) as follows:
 \[U(-20,000) = pU(50,000) + (1-p)U(-50,000)\]
 \[= 0.55 \times 10 + 0.45 \times 0\]
 \[= 5.5\]
Assigning Utility in General

• We follow the same procedure for all monetary values in the payoff table.

• DM is asked to select one of two choices:
 1. a guaranteed amount M, or
 2. participate in the lottery
 DM get a payoff of $50,000 with probability p, or a payoff of $-50,000$ with probability $(1-p)$

• We find the probability p of indifference.

• Then, we can determine the U(M) as follows:
 \[U(M) = pU(50,000) + (1-p)U(-50,000) \]
 \[= p(10) + (1-p)(0) \]
 \[= 10p \]
Utility of Payoff Values

<table>
<thead>
<tr>
<th>Monetary Value</th>
<th>Indifference Value of p</th>
<th>Utility Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>NA</td>
<td>10.0</td>
</tr>
<tr>
<td>30,000</td>
<td>0.95</td>
<td>9.5</td>
</tr>
<tr>
<td>20,000</td>
<td>0.90</td>
<td>9.0</td>
</tr>
<tr>
<td>0</td>
<td>0.75</td>
<td>7.5</td>
</tr>
<tr>
<td>-20,000</td>
<td>0.55</td>
<td>5.5</td>
</tr>
<tr>
<td>-30,000</td>
<td>0.40</td>
<td>4.0</td>
</tr>
<tr>
<td>-50,000</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>
Utility Table

<table>
<thead>
<tr>
<th>Decision</th>
<th>Prices up s_1</th>
<th>Prices stable s_2</th>
<th>Prices down s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>9.5</td>
<td>9.0</td>
<td>0</td>
</tr>
<tr>
<td>d_2</td>
<td>10</td>
<td>5.5</td>
<td>4.0</td>
</tr>
<tr>
<td>d_3</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Decision based on Expected Utility

\[
\begin{align*}
EU(d_1) &= 0.3(9.5) + 0.5(9.0) + 0.2(0) = 7.35 \\
EU(d_2) &= 0.3(10) + 0.5(5.5) + 0.2(4.0) = 6.55 \\
EU(d_3) &= 0.3(7.5) + 0.5(7.5) + 0.2(7.5) = 7.50
\end{align*}
\]

Therefore, SELECT \(d_3 \) [Do Not Invest] with \(EU = 7.50 \)
Ranking of Alternative with Expected Utility

<table>
<thead>
<tr>
<th>Rank of Alternative</th>
<th>Expected Utility</th>
<th>Expected Monetary Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not Invest</td>
<td>7.50</td>
<td>0</td>
</tr>
<tr>
<td>Investment A</td>
<td>7.35</td>
<td>9,000</td>
</tr>
<tr>
<td>Investment B</td>
<td>6.55</td>
<td>-1,000</td>
</tr>
</tbody>
</table>

Investment A is rejected because the 20% of 50,000 loss was too RISKY for the DM. DM, in this case, is a Risk Avoider.
Decision Maker is a Risk Taker

- Suppose the DM was feeling comfortable about the financial status of his company
- DM was seeking investments that may lead to high payoff and was willing to take risk
- The DM will follow the same procedure for determination of utilities of the payoffs
- But he will take the choice of the Lottery at lower probabilities
Utility of Payoff Values for a Risk Taker

<table>
<thead>
<tr>
<th>Monetary Value</th>
<th>Indifference Value of p</th>
<th>Utility Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000</td>
<td>NA</td>
<td>10.0</td>
</tr>
<tr>
<td>30,000</td>
<td>0.50</td>
<td>5.0</td>
</tr>
<tr>
<td>20,000</td>
<td>0.40</td>
<td>4.0</td>
</tr>
<tr>
<td>0</td>
<td>0.25</td>
<td>2.5</td>
</tr>
<tr>
<td>-20,000</td>
<td>0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>-30,000</td>
<td>0.10</td>
<td>1.0</td>
</tr>
<tr>
<td>-50,000</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>
Utility Table

<table>
<thead>
<tr>
<th>Decision</th>
<th>Prices up s_1</th>
<th>Prices stable s_2</th>
<th>Prices down s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>5.0</td>
<td>4.0</td>
<td>0</td>
</tr>
<tr>
<td>d_2</td>
<td>10</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>d_3</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Decision based on Expected Utility

\[
EU(d_1) = 0.3(5.0) + 0.5(4.0) + 0.2(0) = 3.50 \\
EU(d_2) = 0.3(10) + 0.5(1.5) + 0.2(1.0) = 3.95 \\
EU(d_3) = 0.3(2.5) + 0.5(2.5) + 0.2(2.5) = 2.50
\]

Therefore, SELECT \(d_2\) [Investment B] with EU = 3.95
Ranking of Alternative with Expected Utility

<table>
<thead>
<tr>
<th>Rank of Alternative</th>
<th>Expected Utility</th>
<th>Expected Monetary Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment B</td>
<td>3.95</td>
<td>-1000</td>
</tr>
<tr>
<td>Investment A</td>
<td>3.50</td>
<td>9,000</td>
</tr>
<tr>
<td>Do not Invest</td>
<td>2.50</td>
<td>0</td>
</tr>
</tbody>
</table>

- Investment B is selected even though EV is negative.
- DM, in this case, is a Risk Taker and willing to seek the opportunity of 50,000 payoff in Investment B.
Utility Function for Risk Avoider, Risk Taker, and Risk Neutral
EV vs. EU

• As can be seen from the graph above, EV and EU will result in the same recommendation for a risk neutral DM.
• There is a range of monetary values where the DM is neutral ➔ the EV approach should be selected because EV & EU will be in agreement.
• The range is where the payoffs (profit or loss) are not considered great.