CE 202 HW \#5 Solution

\#1. Determine the force \mathbf{P} required to maintain equilibrium in each case.

(a) $\sum \mathrm{Fy}=4 \mathrm{P}-100=0 \Longrightarrow \mathrm{P}=25 \mathrm{lb}$
(b) $\sum \mathrm{Fy}=3 \mathrm{P}-100=0 \Longrightarrow \mathrm{P}=33.33 \mathrm{lb}$
(c) $\sum \mathrm{Fy}=3 \mathrm{P}+3 \mathrm{P}+3 \mathrm{P}-100=0 \Longrightarrow \mathrm{P}=11.11 \mathrm{lb}$
\#2

It's required to determine the reactions at the supports

$$
\cos \theta=\frac{3}{5} ; \quad \sin \theta=\frac{4}{5}
$$

Since D is a hinge, moment at B varnishes. Thus

$$
\begin{aligned}
& M_{D}=4 \cos 30^{\circ}(12)-6 R_{A}+8(2)=0 \\
& 6 R_{A}=57.5692 \Rightarrow R_{A}=9.595 \text { kips }
\end{aligned}
$$

Moment of all forces ξ reactions about $B=0$ However for the left part of D, all forces $\{$ reactions

Can not Transfer moment across the hinge but Can Transfer shear forces. So
shear at $D=-4 \cos 30^{\circ}+9.595-8=-1.869 k=1.869 k \underset{D}{d}$

$$
\begin{aligned}
\therefore M_{B}= & 1.869(8)+15-12\left(\frac{4}{5}\right)(8)+16 R_{C y}=0 \\
& 16 R_{C y}=+46.848 \Rightarrow R_{C y}=2.928 \text { kips } \\
\sum F_{y}= & -1.869+R_{B}-12 \sin \theta+R_{c}=0 \\
& -1.869+R_{B}-12\left(\frac{4}{5}\right)+2.928=0 \\
& R_{B}=8.541 \text { kips } \\
\sum F_{x}= & -4 \sin 30^{\circ}-12\left(\frac{3}{5}\right)+R_{c x}=0 \Rightarrow R_{C x}=9.2 \text { kips }
\end{aligned}
$$

Alternatively we can separate the structure at the linge D as

Part 1

Part 2

Equilibrium of part 1:

$$
\begin{aligned}
\sum F_{x}= & -4 \sin 30^{\circ}+F_{D x}=0 \Rightarrow F_{D x}=2 \text { kips } \\
\sum m_{D}= & 4 \cos 30^{\circ}(12)-6 R_{A}+8(2)=0 \\
& 6 R_{A}=57.5692 \Rightarrow R_{A}=9.595 \text { kips } \\
\Sigma F_{y}= & -4 \cos 30^{\circ}+R_{A}-8+F_{D y}=0 \\
& -4 \cos 30^{\circ}+9.595-8+F_{D y}=0 \\
& F_{D y}=1.869 \text { kip } \uparrow
\end{aligned}
$$

Equilibrium of part 2 :

$$
\begin{aligned}
& \sum M_{B}=1.869(8)+15-12\left(\frac{4}{5}\right)(8)+16 R_{c y}=0 \\
& R_{c y}=2.928 \mathrm{~K}_{1} p_{s} \\
& \sum F_{y}=-1.869+R_{B}-12\left(\frac{4}{5}\right)+2.928=0 \Rightarrow R_{B}=8.541 \mathrm{kips} \\
& \sum F_{x}=-2-12\left(\frac{3}{5}\right)+R_{c x}=0 \Rightarrow R_{c x}=9.2 \mathrm{kip}
\end{aligned}
$$

\#3

It's required to determine the hor joontal and vertical components of force at pins A and C of the frame

Solution: Durde the frame at hinge B luke in problem 2

Part 1
Equilibrium of part 1:

$$
\begin{align*}
& \sum F_{x}=R_{B x}-R_{A x}=0 \cdots(3.1) \quad R_{C y} \tag{3.1}\\
& \sum M_{B}=-3 R_{A y}+200(3)\left(\frac{3}{2}\right)=0 \Rightarrow R_{A y}=300 \mathrm{~N} \\
& \sum F_{y}=300-200(3)+R_{B y}=0 \Rightarrow R_{B y}=300 \mathrm{~N}
\end{align*}
$$

Equilibrium of part 2 :

$$
\begin{aligned}
& \sum f_{x}=R_{c x}-R_{3 x}=0 \Rightarrow(3.2) \\
& \sum F_{y}=R_{c y}-300=0 \Rightarrow R_{c y}=300 \mathrm{~N} \\
& \sum M_{c}=3 R_{B x}-3(300)=0 \Rightarrow R_{B x}=300 \mathrm{~N}
\end{aligned}
$$

From (3.1), $R_{A x}=R_{B x}=300 \mathrm{~N}$, and from (3.2), $R_{C x}=R_{B x}=300 \mathrm{~N}$
\therefore At $A, R_{A x}=R_{A y}=300 \mathrm{~N}$, and at $C, R_{c x}=R_{c y}=300 \mathrm{~N}$
\#4-Determise the horizontal \& vertical components of force at pins $A, B, \frac{1}{y} C$ exerted on member $A B C$

Solution:
The structure can be separated mots 2 FED pants and replacing member $C D$ by a single axial component as:

Member CD runs between 2 hinges and so it commot transmit moment but can transmit force. so it acts like an inctiried axial member runing strangle from C to D in the frame

$$
\begin{aligned}
& \cos \theta=\frac{6}{\sqrt{4^{2}+6^{2}}}=0.8321 \\
& \sin \theta=\frac{4}{\sqrt{4^{2}+6^{2}}}=0.5547 \\
& \tan \theta=\frac{0.5547}{0.8321}=\frac{2}{3}
\end{aligned}
$$

Equilibrium of part 2 :

$$
\begin{aligned}
& \sum M_{C}= 3 R_{B y}+80(1)-80(2)=0 \\
& 3 R_{B y}=80 \Rightarrow R_{B y}=26.67 \mathrm{lb} \\
& \sum F_{y}=-R_{B y}+F_{C D} \sin \theta-80=0 \\
&-\frac{80}{3}+0.5547 F_{C D}-80=0 \\
& 0.5547 F_{C D}=\frac{320}{3} \Rightarrow F_{C D}=192.30 \mathrm{lb} \\
& R_{C x}=F_{C D} \cos \theta=160\left(b \rightarrow R_{C y}=F_{C D} \sin \theta=106.667 \mathrm{lb} \uparrow\right. \\
& \sum F_{x}=R_{A}+R_{B x}+F_{C D} \cos \theta-80=0 \ldots \ldots(4.1)
\end{aligned}
$$

Equilibrium of part 1 :

$$
\begin{aligned}
\Sigma m_{E}= & -4 R_{B x}+3 R_{B y}+80(3)=0 \\
& -4 R_{B x}+3\left(\frac{80}{3}\right)+80(3)=0 \\
& 4 R_{B x}=320 \Rightarrow R_{B x}=8015
\end{aligned}
$$

Then from (4.1),

$$
R_{A}+80+192.30(0.8321)-80=0 \Rightarrow R_{A}=-160 \mathrm{l}
$$

Hence at $A, \quad R_{A}=1601 \mathrm{~b} \leftarrow$
at $B, R_{B x}=80 \mathrm{lb} \rightarrow, R_{B y}=26.67 \mathrm{lb} \downarrow$
\#5 Determine the reactions at the supports

Solution

$$
\begin{aligned}
& \cos \theta=\frac{5}{13} \\
& \sin \theta=\frac{12}{13}
\end{aligned}
$$

Part 1 F.B.D Part 2

Equilibrium of part 2

$$
\begin{aligned}
\sum M_{C}= & 12 R_{B}-200(8) \sin 60^{\circ}-4000=0 \\
& 12 R_{B}=5385.6406 \Rightarrow R_{B}=448.80 \mathrm{lb} \\
\sum F_{y}= & -R_{c y}-200 \sin 60^{\circ}+448.80 \\
& R_{c y}=275.6016 \\
\sum F_{x}= & R_{C x}+200 \cos 60^{\circ}=0 \Rightarrow R_{c x}=-10016
\end{aligned}
$$

Equilibrium of part 1 :

$$
\begin{aligned}
& \sum M_{A}=M_{A}-500\left(\frac{12}{13}\right)(4)+275.60(8)=0 \Rightarrow M_{A}=-358.6516 \cdot f t \\
& \sum F_{y}=R_{A y}-500\left(\frac{12}{13}\right)+275.60=0 \Rightarrow R_{A y}=185.9416 \\
& \sum F_{x}=R_{A x}-500\left(\frac{5}{13}\right)+100=0 \Rightarrow R_{A x}=92.3116
\end{aligned}
$$

